In the title complex, [Ni(2)(C(13)H(11)F(2)N(6)O)(2)(C(2)H(3)O(2))(2)]·0.5CH(3)OH, there are two half-molecules in the asymmetric unit. The two centrosymmetrically related Ni(II) atoms, each attached to an acetate ligand, are linked by two fluconazole ligands. Each Ni(II) atom is six-coordinated in a distorted octa-hedral geometry by two N atoms of the triazole groups and two bridging O atoms from two different fluconazole ligands and two O atoms from a chelating acetate ligand. In the crystal structure, the half-occupied methanol solvent mol-ecule is linked to a triazole group via an O-H⋯N hydrogen bond.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2980145 | PMC |
http://dx.doi.org/10.1107/S160053680905377X | DOI Listing |
J Cancer
January 2025
Department of Basic Dental Sciences, College of Dentistry, Princess Nourah bint Abdulrahman University (PNU), P.O. Box 84428, Riyadh 11671, Saudi Arabia.
Angew Chem Int Ed Engl
January 2025
Hokkaido University: Hokkaido Daigaku, WPI-ICReDD, Kita 21 Nishi 10, Kita-ku, 001-0021, Sapporo, JAPAN.
Fluorine-containing compounds have shown unparalleled impacts in the realm of functional molecules, and the ability to prepare novel structures has been crucial in unlocking new properties for applications in pharmaceutical and materials science. Herein, we report a copper-catalyzed, photoinduced defluorinative C‒O coupling between trifluoromethylarenes and alcohols. This method allows for direct access to a wide selection of difluorobenzylether (ArCF2OR) molecules, including a compound displaying liquid crystal behavior.
View Article and Find Full Text PDFChem Asian J
December 2024
Department of chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India.
Metal-organic gels (MOGs) are a type of supramolecular complex that have become highly intriguing due to their synergistic combination of inorganic and organic elements. We report the synthesis and characterization of a Ni-directed supramolecular gel using chiral amino acid L-DOPA (3,4-dihydroxy phenylalanine) containing ligand, which coordinates with Ni(II) to form metal-organic gels with exceptional properties. The functional Ni(II)-gel was synthesized by heating nickel(II) acetate hexahydrate and the L-DOPA containing ligand in DMSO at 70 °C.
View Article and Find Full Text PDFInorg Chem
December 2024
Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo 19, Murcia 30100, Spain.
Unsymmetrical bis-cyclometalated dicarboxylato complexes (-6-32)-[Pt(tpy)(OCR)] [tpy = cyclometalated 2-(-tolyl)pyridine, R = -Bu (), Me (), Ph (), CF ()], are obtained from the reaction of -[Pt(tpy)] with the appropriate PhI(OCR) reagent. Treatment of complexes of this type with different carboxylates (R'CO) results in the formation of mixed-carboxylato derivatives, namely (-6-43)-[Pt(tpy)(OCMe)(OCR')] [R' = -Bu (), CF (), Ph ()], (-6-34)-[Pt(tpy)(OCCF)(OCR')] [R' = -Bu (), Me (), Ph ()], and (-6-34)-[Pt(tpy)(OC--Bu)(OCMe)] (). Irradiation of - and - with UV light (365 nm) in MeCN gives 5-methyl-2-(2-pyridyl)phenyl pivalate (), 5-methyl-2-(2-pyridyl)phenyl acetate () or 5-methyl-2-(2-pyridyl)phenyl benzoate () as the major photoproduct from most complexes, resulting from a reductive C-O coupling between a tpy ligand and a carboxylato ligand.
View Article and Find Full Text PDFBiometals
December 2024
Department of Chemistry, Baba Mastnath University, Asthal Bohar, Rohtak, 124021, India.
The Schiff base metal complexes containing the transition metal ions Co(II), Ni(II) and Cu(II) were synthesized using their nitrate and acetate salts. An octahedral environment encircling metal complexes has been demonstrated by the findings of multiple spectroscopic approaches that were employed to demonstrate the structure of the metal complexes. The Coats-Redfern method of thermal analysis was employed to carry out the kinetic and thermodynamic calculations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!