5,7-Dimethoxy-isobenzofuran-1(3H)-one.

Acta Crystallogr Sect E Struct Rep Online

Published: August 2009

The asymmetric unit of the title compound, C(10)H(10)O(4), which has been isolated from rhizoma Polygonum Cuspidatum, a Chinese folk medicine, contains two crystallographically independent mol-ecules. The mol-ecules are essentially planar, with a maximum deviation of 0.061 (2) Å from the best planes. The crystal packing is stabilized by weak inter-molecular C-H⋯O hydrogen-bonding inter-actions, with a stacking direction of the mol-ecules parallel to [101].

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2969903PMC
http://dx.doi.org/10.1107/S1600536809031183DOI Listing

Publication Analysis

Top Keywords

57-dimethoxy-isobenzofuran-13h-one asymmetric
4
asymmetric unit
4
unit title
4
title compound
4
compound c10h10o4
4
c10h10o4 isolated
4
isolated rhizoma
4
rhizoma polygonum
4
polygonum cuspidatum
4
cuspidatum chinese
4

Similar Publications

How a single, naive T cell can give rise to diverse progenies of effector and memory cells is not completely understood. One way to achieve this is by asymmetric cell division (ACD), characterized by an unequal distribution of cellular cargo, resulting in divergent daughter cells already after the first division-one being more destined to an effector and the other more to a memory fate. Here, we established two methods to analyze the relative distribution of the older "mother" centrosome and the younger "daughter" centrosome during the first cell division of activated CD8 T cells.

View Article and Find Full Text PDF

High-Density Polyethylene Janus Fibrous Membrane with Enhanced Breathability and Moisture Permeability via PDA Assisted Hydrophilic Modification.

Macromol Rapid Commun

January 2025

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.

Functional fibrous membranes with high mechanical properties are intensively developed for different application fields. In this study, to enhance moisture and air permeability without compromising mechanical strength, a facile float-surface modification strategy is employed to fabricate Janus fibrous membranes with distinct hydrophobicity/hydrophilicity using the high-density polyethylene (HDPE) fibrous membranes. By coating one side of the HDPE fibrous membranes with polydopamine (PDA) and a superhydrophilic polyelectrolyte, the obtained Janus HDPE fibrous membranes demonstrate an excellent water transmission rate (577.

View Article and Find Full Text PDF

Extremely low lattice thermal conductivity in light-element solid materials.

Natl Sci Rev

January 2025

Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.

Lattice thermal conductivity ( ) is of great importance in basic sciences and in energy conversion applications. However, low- crystalline materials have only been obtained from heavy elements, which typically exhibit poor stability and possible toxicity. Thus, low- materials composed of light elements should be explored.

View Article and Find Full Text PDF

Bio-inspired carbon-based artificial muscle with precise and continuous morphing capabilities.

Natl Sci Rev

January 2025

CAS Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

In the face of advancements in microrobotics, intelligent control and precision medicine, artificial muscle actuation systems must meet demands for precise control, high stability, environmental adaptability and high integration miniaturization. Carbon materials, being lightweight, strong and highly conductive and flexible, show great potential for artificial muscles. Inspired by the butterfly's proboscis, we have developed a carbon-based artificial muscle, hydrogen-substituted graphdiyne muscle (HsGDY-M), fabricated efficiently using an emerging hydrogen-substituted graphdiyne (HsGDY) film with an asymmetrical surface structure.

View Article and Find Full Text PDF

Comprehensive global proteome profiling that is amenable to high throughput processing will broaden our understanding of complex biological systems. Here, we evaluated two leading mass spectrometry techniques, Data Independent Acquisition (DIA) and Tandem Mass Tagging (TMT), for extensive protein abundance profiling. DIA provides label-free quantification with a broad dynamic range, while TMT enables multiplexed analysis using isobaric tags for efficient cross-sample comparisons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!