Aim: The purpose of this study was to develop an improved method for collagen and protein assessment of fibrotic lungs while decreasing animal use.
Methods: 8-10 week old, male C57BL/6 mice were given a single intratracheal instillation of crocidolite asbestos or control titanium dioxide. Lungs were collected on day 14 and dried as whole lung, or homogenized in CHAPS buffer, for hydroxyproline analysis. Insoluble and salt-soluble collagen content was also determined in lung homogenates using a modified Sirius red colorimetric 96-well plate assay.
Results: The hydroxyproline assay showed significant increases in collagen content in the lungs of asbestos-treated mice. Identical results were present between collagen content determined on dried whole lung or whole lung homogenates. The Sirius red plate assay showed a significant increase in collagen content in lung homogenates however, this assay grossly over-estimated the total amount of collagen and underestimated changes between control and fibrotic lungs, conclusions: The proposed method provides accurate quantification of collagen content in whole lungs and additional homogenate samples for biochemical analysis from a single animal. The Sirius-red colorimetric plate assay provides a complementary method for determination of the relative changes in lung collagen but the values tend to overestimate absolute values obtained by the gold standard hydroxyproline assay and underestimate the overall fibrotic injury.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3093059 | PMC |
Sci Rep
January 2025
Department of Engineering Mechanics, KTH Royal Institute of Technology, Stockholm, Sweden.
Aneurysm rupture is a life-threatening event, yet its underlying mechanisms remain largely unclear. This study investigated the fracture properties of the thoracic aneurysmatic aorta (TAA) using the symmetry-constraint Compact Tension (symconCT) test and compared results to native and enzymatic-treated porcine aortas' tests. With age, the aortic stiffness increased, and tissues ruptured at lower fracture energy [Formula: see text].
View Article and Find Full Text PDFBiomater Sci
January 2025
Department of Periodontology, College of Dentistry and Institute of Oral Bioscience, Jeonbuk National University, Jeonju, Republic of Korea.
Infected alveolar bone defects pose challenging clinical issues due to disrupted intrinsic healing mechanisms. Thus, the employment of advanced biomaterials enabling the modulation of several aspects of bone regeneration is necessary. This study investigated the effect of multi-functional nanoparticles on anti-inflammatory/osteoconductive characteristics and bone repair in the context of inflamed bone abnormalities.
View Article and Find Full Text PDFAesthetic Plast Surg
January 2025
Department of Plastic and Cosmetic Surgery, Tongji Hospital, School of Medicine, Tongji University, No.389 Xincun Road, Shanghai, 200092, China.
Background: The use of PCL fillers has increased due to their long-lasting effects and collagen stimulation properties. However, managing vascular embolisms caused by PCL fillers is challenging due to the inability to dissolve them quickly. This study builds upon our previous findings from animal studies, which provided valuable insights into the management of PCL-related vascular complications.
View Article and Find Full Text PDFJ Control Release
December 2024
Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:
The abnormal physiology of the tumor microenvironment poses a challenge to the drug delivery in the tumor tissues. The dense tumor stroma hinders the movement of nanomedicine through the interstitium and negatively impacts their efficacy. In this study, hydroxychloroquine (HCQ) was investigated for its impact on alleviating the hindrance offered to the nanomedicine by extracellular matrix (ECM) components such as collagen and hyaluronan.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
January 2025
Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Medical Center, Winston-Salem, North Carolina, USA.
This study aimed to determine if local injection of CXCL12 reduces sphincter fibrosis, restores sphincter muscle content, vascularization, and innervation, and recruits progenitor cells in a rabbit model of anal sphincter injury and incontinence. Adult female rabbits were assigned to 3 groups: uninjured/no treatment (control), injured/treated (treated), and injured/no treatment (untreated) (n=4 each). Injured groups were anesthetized and a section of external anal sphincter was removed at the 9:00 o'clock position.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!