Pseudomonas quinolone signal affects membrane vesicle production in not only gram-negative but also gram-positive bacteria.

Microbes Environ

Graduate School of Life and Environmental Sciences, University of Tsukuba, 1–1–1 Tennodai, Tsukuba, Ibaraki 305–8572, Japan.

Published: September 2011

Many Gram-negative bacteria naturally produce membrane vesicles (MVs) to the extracellular milieu. The Pseudomonas quinolone signal (PQS), a quorum-sensing signal of Pseudomonas aeruginosa, is a positive regulator of MV production. In this study, we investigated its effects on MV production in other Gram-negative and -positive bacterial species. The addition of PQS to an Escherichia coli K12 culture resulted in increased MV production and enlarged MVs. An excessive amount of MgCl(2) repressed E. coli MV production either with or without PQS, suggesting that an anionic repulsion of cellular surfaces increases MV production. PQS was found in the cellular membrane and MVs in E. coli. The enhancement of MV production by PQS occurred in other Gram-negative bacteria, including Burkholderia and Pseudomonas species. Moreover, PQS induced MV production in a Gram-positive bacterium, Bacillus subtilis 168, which does not normally produce MV under laboratory conditions. An excessive amount of MgCl(2) did not repress B. subtilis MV production in the presence of PQS, suggesting the production mechanism to be different from that in Gram-negative bacteria. Together, these results indicated that PQS enhances MV production in Gram-negative bacteria and induces it in Gram-positive bacteria.

Download full-text PDF

Source
http://dx.doi.org/10.1264/jsme2.me09182DOI Listing

Publication Analysis

Top Keywords

gram-negative bacteria
16
production gram-negative
12
production pqs
12
production
11
pseudomonas quinolone
8
quinolone signal
8
gram-positive bacteria
8
pqs
8
excessive amount
8
amount mgcl2
8

Similar Publications

The rise in antimicrobial resistance poses a significant threat to global health, particularly among diabetic patients who are prone to urinary tract infections (UTIs). Pathogens that cause UTI among diabetic patients exhibit significant multidrug resistance (MDR) patterns, necessitating more precise empirical treatment strategies..

View Article and Find Full Text PDF

sp. nov. and sp. nov., two bacteria isolated from marine sediment in the East China Sea.

Int J Syst Evol Microbiol

January 2025

Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315800, PR China.

Two Gram-stain-negative, curved-rod-shaped, non-motile and aerobic bacteria W6 and I13 were isolated from marine sediment samples collected from Meishan Island located in the East China Sea. Catalase and oxidase activities and hydrolysis of Tween 40, 60 and 80 were positive for both strains, while nitrate reduction, indole production, methyl red reaction and HS production were negative. Phylogenetic analyses based on 16S rRNA and genome sequences revealed that strains W6 and I13 formed distinct phylogenetic lineages within the genera and , respectively.

View Article and Find Full Text PDF

Carboxy-Amidated AamAP1-Lys has Superior Conformational Flexibility and Accelerated Killing of Gram-Negative Bacteria.

Biochemistry

January 2025

Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa.

C-terminal amidation of antimicrobial peptides (AMPs) is a frequent minor modification used to improve antibacterial potency, commonly ascribed to increased positive charge, protection from proteases, and a stabilized secondary structure. Although the activity of AMPs is primarily associated with the ability to penetrate bacterial membranes, hitherto the effect of amidation on this interaction has not been understood in detail. Here, we show that amidation of the scorpion-derived membranolytic peptide AamAP1-Lys produces a potent analog with faster bactericidal activity, increased membrane permeabilization, and greater Gram-negative membrane penetration associated with greater conformational flexibility.

View Article and Find Full Text PDF

The growing demand for biological products drives many efforts to maximize expression of heterologous proteins. Advances in high-throughput sequencing can produce data suitable for building sequence-to-expression models with machine learning. The most accurate models have been trained on one-hot encodings, a mechanism-agnostic representation of nucleotide sequences.

View Article and Find Full Text PDF

We have recently demonstrated a novel anaerobic NADH-dependent haem breakdown reaction, which is carried out by a range of haemoproteins. The Yersinia enterocolitica protein, HemS, is the focus of further research presented in the current paper. Using conventional experimental methods, bioinformatics, and energy landscape theory (ELT), we provide new insight into the mechanism of the novel breakdown process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!