The atmospheric movement of arid soil can play an important role in the movement of microorganisms attached to soil microparticles. Bacterial community structures in Asian dust collected at Beijing were investigated using the 16S rRNA gene sequence and compared to those in arid soil, a possible source of the dust. Asian dust samples contained 2.5×10(7) to 3.5×10(9) copies of the 16S rRNA gene gram(-1). Therefore, more than 10(13) bacterial cells (km)(-2) per month were estimated to arrive in Beijing via Asian dust. Terminal restriction fragment length polymorphism analysis revealed that the bacterial community structures in Asian dust samples differed greatly according to the scale of the dust event. The bacterial communities from major dust events were similar to those from an arid region of China.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1264/jsme2.me09166 | DOI Listing |
Environ Sci Pollut Res Int
December 2024
Amrita School for Sustainable Futures, Amrita Vishwa Vidyapeetham, Amritapuri, 690525, Kerala, India.
The 'Third Pole', home to numerous glaciers, serves as vital water reserves for a significant portion of the Asian population and has garnered global attention within the context of climate change due to their highly vulnerable nature. While a general decline in global glacial extent has been observed in recent decades, the pronounced regional imbalances across the Third Pole present a perplexing anomaly. To assess the impact of glacier mass changes in the Gangotri basin, we conducted a comprehensive analysis using remote sensing data to estimate spatially resolved mass changes from 2000 to 2023.
View Article and Find Full Text PDFSci Total Environ
December 2024
State Key Laboratory of Severe Weather and Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China; Center for Excellence in Regional Atmospheric Environment, IUE, Chinese Academy of Sciences, Xiamen 361021, China. Electronic address:
For nearly half a century, the East Asian sand-dust system (SDS) has undergone complex changes in intensity and has become a new focus of attention. To date, there are many uncertainties in understanding the complex observational facts of SDS using commonly used single-climate models. This study suggests that the SDS is an organized weather system that grows under the support of an atmospheric westerly belt environment (including water, soil, aerosol composition, and climate change).
View Article and Find Full Text PDFEnviron Int
December 2024
Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Japan; Institute for International Academic Research, Kyoto University of Advanced Science, Kyoto, Japan; Research Institute for Coexistence and Health Science, Kyoto University of Advanced Science, Kyoto, Japan.
Asian sand dust (ASD), a significant desert sand dust, contains sub-2.5 µm fine particles and adversely affects human health, particularly exacerbating respiratory diseases. Despite this, the intricate physiological responses triggered by inhaled ASD particles remain incompletely understood.
View Article and Find Full Text PDFEur J Nutr
November 2024
Department of Biological Sciences, Faculty of Science, National University of Singapore, Allergy and Molecular Immunology Laboratory, Lee Hiok Kwee Functional Genomics Laboratories, Block S2, Level 5, 14 Science Drive 4, off Lower Kent Ridge Road, Singapore, 117543, Singapore.
Purpose: Dietary fiber intake may influence the risk and severity of atopic dermatitis (AD), a common chronic allergic skin condition. This cross-sequential study investigated the association between dietary fiber intake and various characteristics of AD, including house dust mites (HDM) allergy and dry skin, in 13,561 young Chinese adults (mean years = 22.51, SD ± 5.
View Article and Find Full Text PDFBMC Microbiol
November 2024
Department of Environmental Health, School of Public Health, Fudan University, NHC Key Laboratory of Health Technology Assessment (Fudan University), Shanghai, 200032, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!