We have successfully prepared mono- and bi-functionalized multiwall carbon nanotubes (MWCNT) with thiophene, amine and thiophene-amine groups. The dispersion of nanotubes has been enhanced and stable optimized dispersions in organic solvents were obtained. These functionalized nanotubes have been successfully incorporated into bulk heterojunction (BHJ) organic photovoltaic (OPV) cells with a poly (3-hexyl thiophene) (P3HT) and [6, 6]-phenyl-C(61)-butyric acid methyl ester (PCBM) photoactive blended layer. The incorporation of MWCNT with different functional groups, in the active layer, results in different cell performance with respect to a reference cell. A maximum power conversion efficiency of 2.5% is achieved with the inclusion of thiophene functionalized nanotubes. This improvement in the device performance is attributed to an extension of the exciton dissociation volume and charge transport properties through the nanotube percolation network in P3HT/CNT, PCBM/CNT or both phases. This is believed to be due to more efficient dispersion of the functionalized nanotubes within the photoactive composite layer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0957-4484/22/26/265607 | DOI Listing |
J Chem Phys
January 2025
Departamento de Física, Instituto de Física e Matemática, Universidade Federal de Pelotas, Caixa Postal 354, Pelotas, Brazil.
Water is a fundamental component of life, playing a critical role in regulating metabolic processes and facilitating the dissolution and transport of essential molecules. However, emerging contaminants, such as pharmaceuticals, pose significant challenges to water quality and safety. Nanomaterial-based technologies emerge as a promising solution for removing those contaminants from water.
View Article and Find Full Text PDFiScience
January 2025
School of Civil Engineering and Architecture, Zhejiang University of Science & Technology, Hangzhou, P.R. China.
A possibility of unprecedented architecture may be opened up by combining both vertical and in-plane heterostructures. It is fascinating to discover that the interlayer stress transfer, interlayer binding energy, and interlayer shear stress of bi-layer Gr/hBN with CNTs heterostructures greatly increase (more than 2 times) with increase the numbers of CNTs and both saturate at the numbers of CNTs = 3, but it causes only 10.92% decrease in failure strain.
View Article and Find Full Text PDFSci Rep
January 2025
School of City and Architecture Engineering, Zaozhuang University, Zaozhuang, 277160, Shandong, China.
To study the enhancement effect of carbon nanotubes (CNTs) on the splitting tensile properties of foamed concrete backfill in which cement and fly ash were used as the cementitious materials and natural sand was used as the aggregate, specimens of CNT-modified foamed concrete backfill were prepared. Brazilian splitting tests were used to investigate the splitting tensile strength of the CNT-modified foamed concrete backfill, and the digital speckle correlation method was used to analyze the stress field characteristics and crack expansion law of the specimens during splitting tensile testing. The stress-strain characteristics and energy dissipation laws of the backfill were studied at various static loading rates, and a relationship between the splitting tensile strength, ultimate strain, and loading rate was established.
View Article and Find Full Text PDFBiomed Pharmacother
January 2025
Department of Pathology, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, China. Electronic address:
CK-666, an inhibitor of the actin-related protein complex 2/3 (Arp2/3), can suppress lamellipodia formation and cell migration. However, research on its application in tumor therapy is still limited. Using RNA-seq, we clustered and analyzed the functions of differentially expressed mRNAs in CK-666-treated tumor cells.
View Article and Find Full Text PDFNat Chem Biol
January 2025
Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA.
Nucleoside triphosphate (NTP)-dependent protein assemblies such as microtubules and actin filaments have inspired the development of diverse chemically fueled molecular machines and active materials but their functional sophistication has yet to be matched by design. Given this challenge, we asked whether it is possible to transform a natural adenosine 5'-triphosphate (ATP)-dependent enzyme into a dissipative self-assembling system, thereby altering the structural and functional mode in which chemical energy is used. Here we report that FtsH (filamentous temperature-sensitive protease H), a hexameric ATPase involved in membrane protein degradation, can be readily engineered to form one-dimensional helical nanotubes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!