Impaired locomotor learning and altered cerebellar synaptic plasticity in pep-19/PCP4-null mice.

Mol Cell Biol

Department of Developmental Neurobiology, St Jude Children’s Research Hospital, 262 Danny Thomas Place, MS 323, Memphis, Tennessee 38105-3678, USA.

Published: July 2011

PEP-19/PCP4 maps within the Down syndrome critical region and encodes a small, predominantly neuronal, IQ motif protein. Pep-19 binds calmodulin and inhibits calmodulin-dependent signaling, which is critical for synaptic function, and therefore alterations in Pep-19 levels may affect synaptic plasticity and behavior. To investigate its possible role, we generated and characterized pep-19/pcp4-null mice. Synaptic plasticity at excitatory synapses of cerebellar Purkinje cells, which express the highest levels of Pep-19, was dramatically altered in pep-19/pcp4-null mice. Instead of long-term depression, pep-19/pcp4-null mice exhibited long-term potentiation at parallel fiber-Purkinje cell synapses. The mutant mice have a marked deficit in their ability to learn a locomotor task, as measured by improved performance upon repeated testing on an accelerating rotarod. Thus, our data indicate that pep-19/pcp4 is a critical determinant of synaptic plasticity in cerebellum and locomotor learning.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3133400PMC
http://dx.doi.org/10.1128/MCB.05208-11DOI Listing

Publication Analysis

Top Keywords

synaptic plasticity
16
pep-19/pcp4-null mice
16
locomotor learning
8
synaptic
5
mice
5
impaired locomotor
4
learning altered
4
altered cerebellar
4
cerebellar synaptic
4
plasticity
4

Similar Publications

Autism spectrum disorder (ASD) is linked to ion channel dysfunction, including chloride voltage-gated channel-4 (CLCN4). We generated Clcn4 knockout (KO) mice by deleting exon 5 of chromosome 7 in the C57BL/6 mice. Clcn4 KO exhibited reduced social interaction and increased repetitive behaviors assessed using three-chamber and marble burying tests.

View Article and Find Full Text PDF

Brain connectivity, neural networks, and resilience in aging and neurodegeneration.

Am J Pathol

January 2025

Center for the Neural Basis of Cognition; Department of Pathology; Department of Bioengineering; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA. Electronic address:

The importance of complex systems has become increasingly evident in recent years. The nervous system is one such example with neural networks sitting at the intersection of complex networks and biology. A particularly exciting feature is the resilience of complex systems.

View Article and Find Full Text PDF

Emerging roles for tubulin PTMs in neuronal function and neurodegenerative disease.

Curr Opin Neurobiol

January 2025

Department of Pathology & Cell Biology, Columbia University Irving Medical Center, 10032, New York, NY, USA. Electronic address:

Neurons are equipped with microtubules of different stability with stable and dynamic domains often coexisting on the same microtubule. While dynamic microtubules undergo random transitions between disassembly and assembly, stable ones persist long enough to serve as platforms for tubulin-modifying enzymes (known as writers) that attach molecular components to the α- or β-tubulin subunits. The combination of these posttranslational modifications (PTMs) results in a "tubulin code," dictating the behavior of selected proteins (known as readers), some of which were shown to be crucial for neuronal function.

View Article and Find Full Text PDF

Cellular Cholesterol Loss Impairs Synaptic Vesicle Mobility via the CAMK2/Synapsin-1 Signaling Pathway.

Front Biosci (Landmark Ed)

January 2025

Department of Neurology, Jinshan Hospital, Fudan University, 201508 Shanghai, China.

Background: Neuronal cholesterol deficiency may contribute to the synaptopathy observed in Alzheimer's disease (AD). However, the underlying mechanisms remain poorly understood. Intact synaptic vesicle (SV) mobility is crucial for normal synaptic function, whereas disrupted SV mobility can trigger the synaptopathy associated with AD.

View Article and Find Full Text PDF

Background: Sports fatigue in soccer athletes has been shown to decrease neural activity, impairing cognitive function and negatively affecting motor performance. Transcranial direct current stimulation (tDCS) can alter cortical excitability, augment synaptic plasticity, and enhance cognitive function. However, its potential to ameliorate cognitive impairment during sports fatigue remains largely unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!