P-bodies are cytoplasmic granules that are linked to mRNA decay, mRNA storage, and RNA interference (RNAi). They are known to interact with stress granules in stressed cells, and with late endosomes. Here, we report that P-bodies also interact with mitochondria, as previously described for P-body-related granules in germ cells. The interaction is dynamic, as a large majority of P-bodies contacts mitochondria at least once within a 3-min interval, and for about 18 s. This association requires an intact microtubule network. The depletion of P-bodies does not seem to affect mitochondria, nor the mitochondrial activity to be required for their contacts with P-bodies. However, inactivation of mitochondria leads to a strong decrease of miRNA-mediated RNAi efficiency, and to a lesser extent of siRNA-mediated RNAi. The defect occurs during the assembly of active RISC and is associated with a specific delocalization of endogeneous Ago2 from P-bodies. Our study reveals the possible involvement of RNAi defect in pathologies involving mitochondrial deficiencies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3129203PMC
http://dx.doi.org/10.1074/jbc.M111.240259DOI Listing

Publication Analysis

Top Keywords

rna interference
8
rnai defect
8
p-bodies
7
mitochondria
5
mitochondria associate
4
associate p-bodies
4
p-bodies modulate
4
modulate microrna-mediated
4
microrna-mediated rna
4
interference p-bodies
4

Similar Publications

Aims: Decrease in repolarizing K+ currents, particularly the fast component of transient outward K+ current (Ito,f), prolongs action potential duration (APD) and predisposes the heart to ventricular arrhythmia during cardiac hypertrophy. Histone deacetylases (HDACs) have been suggested to participate in the development of cardiac hypertrophy, and class I HDAC inhibition has been found to attenuate pathological remodeling. This study investigated the potential therapeutic effects of HDAC2 on ventricular arrhythmia in pressure overload-induced cardiac hypertrophy.

View Article and Find Full Text PDF

Background: Primary hyperoxaluria type 1 (PH 1) is a rare genetic condition due to mutations in the AGXT gene. This leads to an overproduction of oxalate in the liver. Hyperoxaluria often causes kidney stones, nephrocalcinosis, and chronic kidney disease.

View Article and Find Full Text PDF

Autophagy is an essential cellular process which functions to maintain homeostasis in response to stressors such as starvation or infection. Here, we report that a subset of autophagy factors including ATG-3 play an antiviral role in Orsay virus infection of . Orsay virus infection does not modulate autophagic flux, and re-feeding after starvation limits Orsay virus infection and blocks autophagic flux, suggesting that the role of ATG-3 in Orsay virus susceptibility is independent of its role in maintaining autophagic flux.

View Article and Find Full Text PDF

Nociception is the process by which sensory neurons detect and encode potentially harmful environmental stimuli to generate behavioral responses. Nociceptor neurons exhibit plasticity in which their sensitivity to noxious stimuli and subsequent ability to drive behavior may be altered by environmental conditions, injury, infection, and inflammation. In some cases, nociceptor sensitization requires regulated changes in gene expression, and recent studies have indicated roles for post-transcriptional mechanisms in regulating these changes as an aspect of nociceptor plasticity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!