A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A multiple stress-responsive gene ERD15 from Solanum pennellii confers stress tolerance in tobacco. | LitMetric

Wild species often show more tolerance to environmental stress factors than their cultivated counterparts. An early responsive-to-dehydration gene was cloned from a drought- and salt-tolerant wild tomato Solanum pennellii (SpERD15). SpERD15 transcript accumulated differentially in different organs, and was remarkably induced by dehydration, salinity, cold and treatment with plant growth regulators. The protein encoded by SpERD15 was predominantly localized in the nucleus. Interestingly, we found that the majority of the transgenic tobacco plants were co-suppressed along with the overexpressing line. Overexpressing plants manifested stress tolerance accompanied by the accumulation of more soluble sugars and proline, and limited lipid peroxidation compared with co-suppression lines, which were more sensitive than the wild type. The differential contents of these compatible solutes in different transgenic lines were related to the changes in the expression of the genes involved in the production of some important osmolytes (P5CS and Sucrose synthase). Reduced lipid peroxidation over a broad range of stress factors was in agreement with increased expression of stress-responsive genes (ADH and GAPDH). Overexpression of SpERD15 increased the efficiency of PSII (F(v)/F(m)) in transgenic tobacco plants by maintaining PSII quinone acceptors in a partially oxidized form. The results show that SpERD15 augments stress tolerance by enhancing the efficiency of PSII through the protection of cellular membranes, as conferred by the accumulation of compatible solutes and limited lipid peroxidation.

Download full-text PDF

Source
http://dx.doi.org/10.1093/pcp/pcr057DOI Listing

Publication Analysis

Top Keywords

stress tolerance
12
lipid peroxidation
12
solanum pennellii
8
stress factors
8
transgenic tobacco
8
tobacco plants
8
limited lipid
8
compatible solutes
8
efficiency psii
8
stress
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!