We present state-of-the-art numerical simulations of a two-dimensional Rayleigh-Taylor instability for a compressible stratified fluid. We describe the computational algorithm and its implementation on the QPACE supercomputer. High resolution enables the statistical properties of the evolving interface that we characterize in terms of its fractal dimension to be studied.

Download full-text PDF

Source
http://dx.doi.org/10.1098/rsta.2011.0048DOI Listing

Publication Analysis

Top Keywords

numerical simulations
8
simulations rayleigh-taylor
4
rayleigh-taylor front
4
front evolution
4
evolution turbulent
4
turbulent stratified
4
stratified fluids
4
fluids state-of-the-art
4
state-of-the-art numerical
4
simulations two-dimensional
4

Similar Publications

A recent study design for clinical trials with small sample sizes is the small n, sequential, multiple assignment, randomized trial (snSMART). An snSMART design has been previously proposed to compare the efficacy of two dose levels versus placebo. In such a trial, participants are initially randomized to receive either low dose, high dose or placebo in stage 1.

View Article and Find Full Text PDF

Railway bridges with lower beam bottom clearances in windblown sand areas tend to accumulate sand particles on the sides of the beams, which seriously impacts railway safety. To investigate the effect of beam clearance height on wind-sand movement near the surface, and to determine the minimum clearance height for railway bridges in such areas, computational fluid dynamics using the Euler-Euler two-phase flow model was employed to simulate the wind-sand flow field beneath bridges with different heights. The results indicated that as clearance height increased, both the high-speed area above the bridge and acceleration area under the bridge increased, while the turbulence area on the leeward side remained unchanged.

View Article and Find Full Text PDF

This study presents a family of coexisting multi-scroll chaos in a network of coupled non-oscillatory neurons. The dynamics of the system are analyzed using phase portraits, basins of attraction, time series, bifurcation diagrams, and spectra of Lyapunov exponents. The coexistence of multiple bifurcation diagrams leads to a complex pattern of multi-scroll formation, which is further complicated by the presence of coexisting single-scroll attractors that merge to form multi-scroll chaos.

View Article and Find Full Text PDF

Although oil extraction is indispensable for meeting worldwide energy demands and ensuring industrial sustainability, various hazards are observed. Therefore, this study examined the chemical oil recovery-related environmental consequences concerning water, soil, ecosystem, and human health damages. A numerical analysis explored the mathematical model for oil extraction from unconventional sources by utilising 3D porous prism geometries under high-temperature conditions.

View Article and Find Full Text PDF

This research presents a numerical study over the unsteady natural convection of an electrically conducting fluid in an open-ended vertical parallel plate microchannel under uniform and asymmetric heat flux subjected to a uniform lateral magnetic field. Slip velocity, as well as temperature jump at channel walls, are modeled using a first-order model. The effects of Knudsen number)(, heat flux ratio)rq(, Grashof number)(, and Hartmann number)M(on mass flow rate, the maximum temperature of the wall, and average Nusselt () as a function of time are discussed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!