The blood brain barrier is the major obstacle to treating lysosomal storage disorders of the central nervous system such as canine fucosidosis. This barrier was overcome by three, monthly injections of recombinant canine α-l-fucosidase enzyme were given intracisternally. In dogs treated from 8 weeks of age enzyme reached all areas of central nervous system as well as the cervical lymph node, bone marrow and liver. Brainstem and spinal cord samples from regions adjacent to the injection site had highest enzyme levels (39-73% of normal). Substantial enzyme activity (8.5-20% of normal controls) was found in the superficial brain compared to deeper regions (2.6-5.5% of normal). Treatment significantly reduced the fucosyl-linked oligosaccharide accumulation in most areas of CNS, liver and lymph node. In the surface and deep areas of lumbar spinal cord, oligosaccharide accumulation was corrected (79-80% reduction) to near normal levels (p<0.05). In the spinal meninges (thoracic and lumbar) enzyme activity (35-39% of normal control) and substrate reduction (58-63% affected vehicle treated samples) reached levels similar to those seen in phenotypically normal carriers (p<0.05).The procedure was safe and well-tolerated, treated (average 16%) dogs gained more weight (p<0.05) and there was no antibody formation or inflammatory reaction in plasma and CSF following treatments. The capacity of early ERT to modify progression of biochemical storage in fucosidosis is promising as this disease is currently only amenable to treatment by bone marrow transplantation which entails unacceptably high risks for many patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.expneurol.2011.04.019 | DOI Listing |
Front Vet Sci
July 2024
VetOracle, Norfolk, United Kingdom.
Front Vet Sci
March 2020
Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States.
Mouse models of human disease remain the bread and butter of modern biology and therapeutic discovery. Nonetheless, more often than not mouse models do not reproduce the pathophysiology of the human conditions they are designed to mimic. Naturally occurring large animal models have predominantly been found in companion animals or livestock because of their emotional or economic value to modern society and, unlike mice, often recapitulate the human disease state.
View Article and Find Full Text PDFHum Mol Genet
October 2019
Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
Lysosomal storage diseases (LSDs) are a group of 70 monogenic disorders characterized by the lysosomal accumulation of a substrate. As a group, LSDs affect ~1 in 5000 live births; however, each individual storage disease is rare, limiting the ability to perform natural history studies or to perform clinical trials. Perhaps in no other biomedical field have naturally occurring large animal (canine, feline, ovine, caprine, and bovine) models been so essential for understanding the fundamentals of disease pathogenesis and for developing safe and effective therapies.
View Article and Find Full Text PDFPediatr Endocrinol Rev
June 2016
Abstract Fucosidosis (OMIM 23000) is an inherited neurodegenerative lysosomal storage disease caused by a deficiency of the lysosomal hydrolase a-L-fucosidase due to mutations in the FUCA1 gene. Without enzyme-targeted therapy patients rarely survive beyond the first decade of life, and therapy options other than supportive care are limited. Hematopoietic transplants, first developed in the fucosidosis dog model, are the only treatment option available capable of delaying the disease course.
View Article and Find Full Text PDFGenes Brain Behav
April 2016
Faculty of Veterinary Science, The University of Sydney, Camperdown, NSW, Australia.
Canine fucosidosis in English Springer spaniels is the only animal model of the neurovisceral lysosomal storage disease fucosidosis available for preclinical therapeutic trials. For this reason, it is crucial to identify critical time points in disease progression, and if there are particular lesions associated with specific aspects of neurologic dysfunction. Historical records of 53 canine fucosidosis cases from 1979 to 2009 containing a neurologic dysfunction score assessing motor, behavioral and sensory dysfunction were interrogated by statistical analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!