Sirtuins are deacetylases involved in metabolic regulation and longevity. Our aim was to test the hypothesis that they are subjected to redox regulation by the [NADH]/[NAD(+)] ratio. We used NIH3T3 fibroblasts in culture, Drosophila fed with or without ethanol and exercising rats. In all three models an increase in [NADH]/[NAD(+)] came up with an increased expression of sirtuin mRNA and protein. PGC-1α (a substrate of sirtuins) protein level was significantly increased in fibroblasts incubated with lactate and pyruvate but this effect was lost in fibroblasts obtained from sirtuin-deficient mice. We conclude that the expression of sirtuins is subject to tight redox regulation by the [NADH]/[NAD(+)] ratio, which is a major sensor for metabolite availability conserved from invertebrates to vertebrates.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.abb.2011.04.020DOI Listing

Publication Analysis

Top Keywords

expression sirtuins
8
redox regulation
8
regulation [nadh]/[nad+]
8
[nadh]/[nad+] ratio
8
free [nadh]/[nad+]
4
[nadh]/[nad+] regulates
4
regulates sirtuin
4
sirtuin expression
4
sirtuins deacetylases
4
deacetylases involved
4

Similar Publications

SIRT2 and ALDH1A1 as critical enzymes for astrocytic GABA production in Alzheimer's disease.

Mol Neurodegener

January 2025

Center for Cognition and Sociality, Life Science Institute (LSI), Institute for Basic Science (IBS), Daejeon, Republic of Korea.

Background: Alzheimer's Disease (AD) is a neurodegenerative disease with drastically altered astrocytic metabolism. Astrocytic GABA and HO are associated with memory impairment in AD and synthesized through the Monoamine Oxidase B (MAOB)-mediated multi-step degradation of putrescine. However, the enzymes downstream to MAOB in this pathway remain unidentified.

View Article and Find Full Text PDF

Osteoporosis (OP) is a common clinical bone disease that can cause a high incidence of non-stress fractures and is one of the main degenerative diseases that endangers the health and life of middle-aged and older women. The mechanism underlying the abnormal differentiation and function of human bone marrow stem cells (hBMSCs) remains to be elucidated. Cell proliferation and differentiation were determined using 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide (MTT) assay, alkaline phosphatase (ALP) staining, and Alizarin Red Staining.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is marked by extracellular beta-amyloid (Aβ) plaques and intracellular Tau tangles, leading to progressive cognitive decline and neuronal dysfunction. Impaired autophagy, a process by which a cell breaks down and destroys damaged or abnormal proteins and other substances, contributes to AD progression. This study investigated Nuclear Receptor Subfamily 1 Group D Member 1 (NR1D1) as a potential therapeutic target for modulating autophagy.

View Article and Find Full Text PDF

The SIRT5-JIP4 interaction promotes osteoclastogenesis by modulating RANKL-induced signaling transduction.

Cell Commun Signal

January 2025

Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, China.

Receptor activator of nuclear factor kappa-B ligand (RANKL) initiates a complex signaling cascade that is crucial for inducing osteoclast differentiation and activation. RANKL-induced signaling has been analyzed in detail, and the involvement of TNF receptor-associated factor 6 (TRAF6), calmodulin-dependent protein kinase (CaMK), NF-κB, mitogen-activated protein kinase (MAPK), activator protein-1 (AP-1), and molecules that contain an immunoreceptor tyrosine-based activation motif (ITAM) has been reported. However, the precise molecular steps that regulate RANKL signaling remain largely unknown.

View Article and Find Full Text PDF

Background: Dysfunction in podocyte mitophagy has been identified as a contributing factor to the onset and progression of diabetic nephropathy (DN), and BMAL1 plays an important role in the regulation of mitophagy. Thus, this study intended to examine the impact of BMAL1 on podocyte mitophagy in DN and elucidate its underlying mechanisms.

Materials And Methods: High D-glucose (HG)-treated MPC5 cells was used as a podocyte injury model for investigating the potential roles of BMAL1 in DN.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!