Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Quantification of subcellularly resolved Ca²⁺ signals in cardiomyocytes is essential for understanding Ca²⁺ fluxes in excitation-contraction and excitation-transcription coupling. The properties of fluorescent indicators in intracellular compartments may differ, thus affecting the translation of Ca²⁺-dependent fluorescence changes into [Ca²⁺] changes. Therefore, we determined the in situ characteristics of a frequently used Ca²⁺ indicator, Fluo-4, and a ratiometric Ca²⁺ indicator, Asante Calcium Red, and evaluated their use for reporting and quantifying cytoplasmic and nucleoplasmic Ca²⁺ signals in isolated cardiomyocytes. Ca²⁺ calibration curves revealed significant differences in the apparent Ca²⁺ dissociation constants of Fluo-4 and Asante Calcium Red between cytoplasm and nucleoplasm. These parameters were used for transformation of fluorescence into nucleoplasmic and cytoplasmic [Ca²⁺]. Resting and diastolic [Ca²⁺] were always higher in the nucleoplasm. Systolic [Ca²⁺] was usually higher in the cytoplasm, but some cells (15%) exhibited higher systolic [Ca²⁺] in the nucleoplasm. Ca²⁺ store depletion or blockade of Ca²⁺ leak pathways eliminated the resting [Ca²⁺] gradient between nucleoplasm and cytoplasm, whereas inhibition of inositol 1,4,5-trisphosphate receptors by 2-APB reversed it. The results suggest the presence of significant nucleoplasmic-to-cytoplasmic [Ca²⁺] gradients in resting myocytes and during the cardiac cycle. Nucleoplasmic [Ca²⁺] in cardiomyocytes may be regulated via two mechanisms: diffusion from the cytoplasm and active Ca²⁺ release via inositol 1,4,5-trisphosphate receptors from perinuclear Ca²⁺ stores.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3093572 | PMC |
http://dx.doi.org/10.1016/j.bpj.2011.03.060 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!