Tryptophan (Trp), an intrinsically fluorescent residue of proteins, has been used widely as an energy donor in fluorescence resonance energy transfer (FRET) experiments aimed at measuring intramolecular distances and distance distributions in protein folding-unfolding reactions. However, the high level of heterogeneity associated with the fluorescence lifetime of tryptophan, even in single-tryptophan proteins, imposes restrictions on its use as the energy donor. A search for a tryptophan analogue having reduced lifetime heterogeneity when compared to tryptophan led us to 5-fluorotryptophan (5F-Trp). A single tryptophan-containing mutant form of barstar, a small 89-residue bacterial protein, has multiple lifetime components in its various structural forms including the unfolded state, similar to observations made with several other proteins. Biosynthetic incorporation of 5F-Trp in place of Trp in the mutant barstar resulted in a significant decrease in the level of heterogeneity of fluorescence decay when compared to Trp-barstar, in the native state as well as in the denatured state. Importantly, observation of a major decay component of more than 80% in both the states makes 5F-Trp a significantly better candidate for being the energy donor in FRET experiments, as compared to Trp. This is expected to enable an unambiguous estimation of intramolecular distance distributions during protein folding and unfolding. The sequence insensitivity of the fluorescence decay kinetics of 5F-Trp in proteins was demonstrated by observing the decay kinetics of 5F-Trp incorporated in several synthetic peptides.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp2016984 | DOI Listing |
Cell Death Dis
January 2025
Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Lymphangiogenesis is vital for tissue fluid homeostasis, immune function, and lipid absorption. Abnormal lymphangiogenesis has been implicated in several diseases such as cancers, inflammatory, and autoimmune diseases. In this study, we elucidate the role of tsRNA-0032 in lymphangiogenesis and its molecular mechanism.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, The University of Hong Kong, Hong Kong 999077, P. R. China.
Electron donor-acceptor complexes are commonly employed to facilitate photoinduced radical-mediated organic reactions. However, achieving these photochemical processes with catalytic amounts of donors or acceptors can be challenging, especially when aiming to reduce catalyst loadings. Herein, we have unveiled a framework-based heterogenization approach that significantly enhances the photoredox activity of perylene diimide species in radical addition reactions with alkyl silicates by promoting faster and more efficient electron donor-acceptor complex formation.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland.
Organic redox systems that can undergo oxidative and reductive (ambipolar) electron transfer are elusive yet attractive for applications across synthetic chemistry and energy science. Specifically, the use of ambipolar redox systems in proton-coupled electron transfer (PCET) reactions is largely unexplored but could enable "switchable" reactivity wherein the uptake and release of hydrogen atoms are controlled using a redox stimulus. Here, we describe the synthesis and characterization of an ambipolar functionalized terthiophene (TTH) bearing methyl thioether and phosphine oxide groups that exhibits switchable PCET reactivity.
View Article and Find Full Text PDFIUCrJ
March 2025
Department of Chemistry, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy.
A detailed study of the X...
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Chemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
The present study focuses on designing mutant peptides derived from the lanthanide binding tag (LBT) to enhance selectivity for trivalent actinide (An) ions over lanthanide (Ln) metal ions (M). The LBT is a short peptide consisting of only 17 amino acids, and is known for its high affinity towards Ln. LBT was modified by substituting hard-donor ligands like asparagine (ASN or N) and aspartic acid (ASP or D) with softer ligand cysteine (CYS or C) to create four mutant peptides: M-LBT (wild-type), M-N103C, M-D105C, and M-N103C-D105C.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!