The paper surveys the binding of anions to the unsaturated 16e Lewis acid [Cp*Ir(TsDPEN)](+) ([1H](+)), where TsDPEN is racemic H(2)NCHPhCHPhNTs(-). The derivatives Cp*IrX(TsDPEN) were characterized crystallographically for X(-) = CN(-), Me(C═NH)S(-), NO(2)(-), 2-pyridonate, and 0.5 MoS(4)(2-). [(1H)(2)(μ-CN)](+) forms from [1H](+) and 1H(CN). Aside from 2-pyridone, amides generally add reversibly and bind to Ir through N. Thioacetamide binds irreversibly through sulfur. Compounds of the type Cp*IrX(TsDPEN) generally form diastereoselectively, although diastereomeric products were observed for the strong ligands (X = CN(-), H(-) (introduced via BH(4)(-)), or Me(C═NH)S(-)). Related experiments on the reaction (p-cymene)Ru(TsDPEN-H) + BH(4)(-) gave two diastereomers of (p-cymene)RuH(TsDPEN), the known hydrogenation catalyst and a second isomer that hydrogenated acetophenone more slowly. These experiment provide new insights into the enantioselectivity of these catalysts. Diastereomerization in all cases was first order in metal with modest solvent effects. The diphenyl groups are generally diequatorial for the stable diastereomers. For the 2-pyridonate adduct, axial phenyl groups are stabilized in the solid state by puckering of the IrN(2)C(2) ring induced by intramolecular hydrogen-bonding. Crystallographic analysis of [Cp*Ir(TsDPEN)](2)(MoS(4)) revealed a unique example of a κ(1),κ(1)-tetrathiometallate ligand. Cp*Ir(SC(NH)Me)TsDPEN) is the first example of a κ(1)-S-thioamidato complex.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic200160qDOI Listing

Publication Analysis

Top Keywords

lewis acid
8
acid [cp*irtsdpen]+
8
coordination chemistry
4
chemistry soft
4
soft chiral
4
chiral lewis
4
[cp*irtsdpen]+ paper
4
paper surveys
4
surveys binding
4
binding anions
4

Similar Publications

Multifunctional Polar Polymer Boosting PEO Electrolytes toward High Room Temperature Ionic Conductivity, High-Voltage Stability, and Excellent Elongation.

ACS Appl Mater Interfaces

January 2025

International Science and Technology Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P.R. China.

Poly(ethylene oxide) (PEO) has been widely studied as an electrolyte owing to its excellent lithium compatibility and good film-forming properties. However, its electrochemical performance at room temperature remains a significant challenge due to its low ionic conductivity, narrow electrochemical window, and continuous decomposition. Herein, we prepare a multifunctional polar polymer to optimize PEO's electrochemical properties and cycling stability.

View Article and Find Full Text PDF

Polyethers are versatile materials extensively used in advanced as well as everyday applications. The incorporation of primary amine functionality into polyethers is particularly attractive due to its well-established coupling chemistries. However, the inherent nucleophilicity of amine group poses a challenge in the anionic ring-opening polymerization (ROP) of epoxides and requires the use of robust protecting groups that can withstand the harsh conditions of ROP without triggering undesirable side reactions.

View Article and Find Full Text PDF

Dioxiranes and their heavier chalcogen analogs have long been recognized as pivotal reagents and intermediates in synthetic chemistry, while trioxetanes have largely remained theoretical constructs. In this work, we present the synthesis of neutral, isoelectronic aluminum/chalcogen analogs of dioxiranes and trioxetanes, specifically aluminadiselenirane, aluminaditellurirane, aluminatriselenetane, aluminatritelluretane, and a mixed Se/Te analog of aluminatrichalcogenetane. These compounds, featuring strained AlCh2 and AlCh3 ring (Ch = Se, Te), exhibit significant polarization between the aluminum and chalcogen components.

View Article and Find Full Text PDF

Reprogramming of Fatty Acid Metabolism in Acute Leukemia.

J Cell Physiol

January 2025

Division of Hematology & Oncology, Department of Pediatrics, School of Medicine, Washington University in Saint Louis, St. Louis, Missouri, USA.

Fatty acids are essential biomolecules that support several cellular processes, such as membrane structures, energy storage and production, as well as signal transduction. Accordingly, changes in fatty acid metabolism can have a significant impact on cell behavior, such as growth, survival, proliferation, differentiation, and motility. Therefore, it is not surprising that many aspects of fatty acid metabolism are frequently dysregulated in human cancer, including in highly aggressive blood cancers such as acute leukemia.

View Article and Find Full Text PDF

Construction of layered micro-/nano-structured MoNiCo-S cathode and broad bean shell derived carbon anode for hybrid supercapacitors.

J Colloid Interface Sci

January 2025

School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China. Electronic address:

Transition metal sulfides, despite their abundance of electrochemically active sites, often demonstrate inadequate rate performance and mechanical stability. The development of a multi-dimensional hierarchical architecture has proven to be an effective approach to address the limitations associated with sulfides. In the present study, MoNiCo-S nanorods featuring hierarchical micro-/nano-structures were successfully synthesized through a straightforward methodology that involved "in situ growth-etching-vulcanization".

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!