Fatigue failure and molecular machine design.

Small

Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Ave., New York, NY 10027, USA.

Published: June 2011

Sophisticated molecular machines have evolved in nature, and the first synthetic molecular machines have been demonstrated. With our increasing understanding of individual operating cycles, the question of how operation can be sustained over many cycles comes to the forefront. In the design of macroscale machines, performance and lifetime are opposing goals. Similarly, the natural evolution of biological nanomachines, such as myosin motor proteins, is likely constrained by lifetime requirements. Rather than bond rupture at high forces, bond fatigue under repeated small stresses may limit the mechanical performance of molecular machines. Here, the effect of cyclic stresses using single and double bonds as simple examples are discussed. Additionally, it is demonstrated that an increase in lifetime requires a reduction in mechanical load and that molecular engineering design features, such as polyvalent bonds capable of rebinding, can extend the bond lifetime dramatically. A universal scaling law for the force output of motors is extrapolated to the molecular scale to estimate the design space for molecular machines.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.201100240DOI Listing

Publication Analysis

Top Keywords

molecular machines
16
molecular
7
machines
5
fatigue failure
4
failure molecular
4
molecular machine
4
design
4
machine design
4
design sophisticated
4
sophisticated molecular
4

Similar Publications

Osteosarcoma (OS) is the most prevalent secondary sarcoma associated with retinoblastoma (RB). However, the molecular mechanisms driving the interactions between these two diseases remain incompletely understood. This study aims to explore the transcriptomic commonalities and molecular pathways shared by RB and OS, and to identify biomarkers that predict OS prognosis effectively.

View Article and Find Full Text PDF

In recent years, immune checkpoint inhibitors (ICIs) has emerged as a fundamental component of the standard treatment regimen for patients with head and neck squamous cell carcinoma (HNSCC). However, accurately predicting the treatment effectiveness of ICIs for patients at the same TNM stage remains a challenge. In this study, we first combined multi-omics data (mRNA, lncRNA, miRNA, DNA methylation, and somatic mutations) and 10 clustering algorithms, successfully identifying two distinct cancer subtypes (CSs) (CS1 and CS2).

View Article and Find Full Text PDF

Hybridisation of in silico and in vitro bioassays for studying the activation of Nrf2 by natural compounds.

Sci Rep

December 2024

University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, 75308, Vietnam.

Oxidative stress, characterized by the damaging accumulation of free radicals, is associated with various diseases, including cardiovascular, neurodegenerative, and metabolic disorders. The transcription factor Nrf2 is pivotal in cellular defense against oxidative stress by regulating genes that detoxify free radicals, thus maintaining redox homeostasis and preventing cellular aging. Keap1 plays a regulatory role through its interaction with Nrf2, ensuring Nrf2 degradation under homeostatic conditions and facilitating its stabilization and nuclear translocation during oxidative stress.

View Article and Find Full Text PDF

Ferroptosis is linked to various pathological conditions; however, the specific targets and mechanisms through which traditional Chinese medicine influences ischemic stroke (IS)-induced ferroptosis remain poorly understood. In this study, data from the Gene Expression Omnibus and disease target databases (OMIM, GeneCards, DisGeNet, TTD, and DrugBank) were integrated with ferroptosis-related gene datasets. To identify key molecular targets of Chuanxiong Rhizoma (CX), drug ingredient databases, including PubChem and TCMBank, were employed to map CX-related targets (CX-DEGs-FRG and CX-IS-FRG).

View Article and Find Full Text PDF

Aptamers, single-stranded nucleic acids that bind to specific targets with high affinity and specificity, hold significant promise in various biomedical and biotechnological applications. The traditional method of aptamer selection, SELEX (Systematic Evolution of Ligands by EXponential Enrichment) takes a lot of work and time. Recent advancements in computational methods have revolutionized aptamer design, offering efficient and effective alternatives.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!