Primary Objective: The hip joint suffers from a high prevalence of degenerative conditions. Athough patient's well-being could be improved through early and more effective interventions, without a greater understanding of the mechanics of the hip, these developments cannot be attained. Thus, this review article summarises the current literature on this subject in order to provide a platform for future developments. To illustrate the influence computational simulations have had on the knowledge advancement in hip mechanics, we explored two methodological approaches: finite element (FE) analysis and multibody dynamics (MBD).
Main Outcomes And Results: Notwithstanding the unique capabilities of FE and MBD, the former generally offers the micromechanics of the articulating surfaces whereas the latter the macromechanics of the skeleton, these two methodologies also provide the bulk of the literature regarding computational modelling of the musculoskeletal system. Although FE has provided significant knowledge on contact pressures and the effects of musculoskeletal geometries, in particular cartilage and bone shapes, MBD has afforded a wealth of understanding on the influence of gait patterns and muscle attachment locations on force magnitudes.
Conclusions: These two computational techniques have, and will continue to, provide significant contributions towards the development of interventions. It is hoped that this article will help focus ongoing technological developments by highlighting areas of success, but also areas of under development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10255842.2011.567983 | DOI Listing |
J Math Biol
January 2025
Institut universitaire de France (IUF), Paris, France.
We build and study an individual based model of the telomere length's evolution in a population across multiple generations. This model is a continuous time typed branching process, where the type of an individual includes its gamete mean telomere length and its age. We study its Malthusian's behaviour and provide numerical simulations to understand the influence of biologically relevant parameters.
View Article and Find Full Text PDFBiophys J
January 2025
Department of Chemical Engineering, Columbia University, New York, NY 10027. Electronic address:
Membrane fusion is central to fundamental cellular processes such as exocytosis, when an intracellular machinery fuses membrane-enclosed vesicles to the plasma membrane for contents release. The core machinery components are the SNARE proteins. SNARE complexation pulls the membranes together, but the fusion mechanism remains unclear.
View Article and Find Full Text PDFJ Math Biol
January 2025
Department of Integrative Biology, Oklahoma State University, Stillwater, OK, 74078, USA.
In the past several decades, much attention has been focused on the effects of dispersal on total populations of species. In Zhang (EL 20:1118-1128, 2017), a rigorous biological experiment was performed to confirm the mathematical conclusion: Dispersal tends to enhance populations under a suitable hypothesis. In addition, mathematical models keeping track of resource dynamics in population growth were also proposed in Zhang (EL 20:1118-1128, 2017) to understand this remarkable phenomenon.
View Article and Find Full Text PDFSci Rep
January 2025
School of Computing, SASTRA Deemed University, Thanjavur, Tamil Nadu, India.
Mechanical ventilation is the process through which breathing support is provided to patients who face inconvenience during respiration. During the pandemic, many people were suffering from lung disorders, which elevated the demand for mechanical ventilators. The handling of mechanical ventilators is to be done under the assistance of trained professionals and demands the selection of ideal parameters.
View Article and Find Full Text PDFSci Rep
January 2025
University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan, 680-749, Republic of Korea.
This study employed large eddy simulation (LES) with the wall-adapting local eddy-viscosity (WALE) model to investigate transitional flow characteristics in an idealized model of a healthy thoracic aorta. The OpenFOAM solver pimpleFoam was used to simulate blood flow as an incompressible Newtonian fluid, with the aortic walls treated as rigid boundaries. Simulations were conducted for 30 cardiac cycles and ensemble averaging was employed to ensure statistically reliable results.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!