Estrogen is implicated as playing an important role in aging and tumorigenesis of estrogen responsive tissues; however the mechanisms underlying the mitogenic actions of estrogen are not fully understood. Here we report that estrogen deficiency in mice caused by targeted disruption of the aromatase gene results in a significant inhibition of telomerase maintenance of telomeres in mouse ovaries in a tissue-specific manner. The inhibition entails a significant shortening of telomeres and compromised proliferation in the follicular granulosa cell compartment of ovary. Gene expression analysis showed decreased levels of proto-oncogene c-Myc and the telomerase catalytic subunit, telomerase reverse transcriptase (TERT), in response to estrogen deficiency. Estrogen replacement therapy led to increases in TERT gene expression, telomerase activity, telomere length and ovarian tissue growth, thereby reinstating ovary development to normal in four weeks. Our data demonstrate for the first time that telomere maintenance is the primary mechanism mediating the mitogenic effect of estrogen on ovarian granulosa cell proliferation by upregulating the genes of c-Myc and TERT in vivo. Estrogen deficiency or over-activity may cause ovarian tissue aging or tumorigenesis, respectively, through estrogen regulation of telomere remodeling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4875204PMC
http://dx.doi.org/10.1007/s13238-011-1033-2DOI Listing

Publication Analysis

Top Keywords

estrogen deficiency
16
estrogen
10
vivo estrogen
8
aging tumorigenesis
8
tumorigenesis estrogen
8
granulosa cell
8
gene expression
8
ovarian tissue
8
deficiency reversibly
4
reversibly induces
4

Similar Publications

Background: Osteoporosis is a pervasive bone metabolic disorder characterized by the progressive degeneration of bone microstructure. Osteoclasts are playing a pivotal role in bone remodeling and resorption. Consequently, modulating osteoclast activity, particularly curbing their overactivation, has become a crucial strategy in clinical treatments.

View Article and Find Full Text PDF

Postmenopausal osteoporosis (PMOP) is a metabolic bone disease driven by estrogen deficiency, primarily manifesting as reduced bone mass and heightened fracture risk. Its development is intricately linked to the balance between Th17 and Treg cells. Recent studies have highlighted the significant role of gut homeostasis in PMOP.

View Article and Find Full Text PDF

Background/objective: 4H syndrome is a rare form of leukodystrophy characterized by hypomyelination, hypodontia, and hypogonadotropic hypogonadism. In 95% of cases, hypomyelination is present, but other clinical features, such as hypodontia and hypogonadotropic hypogonadism, are not always present and may not be necessary for diagnosis. Hypogonadotropic hypogonadism is the most common endocrine complication that can occur in 4H syndrome.

View Article and Find Full Text PDF

FSH/LH co-stimulation in Advanced Maternal Age (AMA) and hypo-responder patients - Arabian gulf delphi consensus group.

Front Endocrinol (Lausanne)

December 2024

The Fertility Clinic, Skive Regional Hospital, Skive, Department of Clinical Medicine, Aarhus University, Skive, Denmark.

Background: In a global effort to assess expert perspectives on the use of recombinant gonadotropins, recombinant human luteinizing hormone (r-hLH) and recombinant human follicle-stimulating hormone (r-hFSH), a consensus meeting was held in Dubai. The key aim was to address three critical questions: What are the factors that influence follicle response to gonadotropins? Which categories of patients are most likely to benefit from LH supplementation? And what are the optimal management strategies for these patients?

Methods: A panel of thirty-six experts reviewed and refined the initial statements and references proposed by the Scientific Coordinator. Consensus was defined as agreement or disagreement by more than two-thirds (66%) of the panel members for each statement.

View Article and Find Full Text PDF

Background: Antiretroviral therapy (ART) causes osteoporosis and bone fractures, increasing morbidity and mortality in people living with HIV (PLH). ART induces immune reconstitution bone loss (IRBL), an inflammatory reaction associated with immune system reactivation. Women represent >50% of PLH, and many are now undergoing menopause, a major cause of postmenopausal osteoporosis that also increases fracture risk.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!