Process modeling languages such as "Dynamical Grammars" are highly expressive in the processes they model using stochastic and deterministic dynamical systems, and can be given formal semantics in terms of an operator algebra. However such process languages may be more limited in the types of objects whose dynamics is easily expressible. For many applications in biology, the dynamics of spatial objects in particular (including combinations of discrete and continuous spatial structures) should be formalizable at a high level of abstraction. We suggest that this may be achieved by formalizing such objects within a type system endowed with type constructors suitable for complex dynamical objects. To this end we review and illustrate the operator algebraic formulation of heterogeneous process modeling and semantics, extending it to encompass partial differential equations and intrinsic graph grammar dynamics. We show that in the operator approach to heterogeneous dynamics, types require integration measures. From this starting point, "measurable" object types can be enriched with generalized metrics under which approximation can be defined. The resulting measurable and "metricated" types can be built up systematically by type constructors such as vectors, products, and labelled graphs. We find conditions under which functions and quotients can be added as constructors of measurable and metricated types.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3092537 | PMC |
http://dx.doi.org/10.1016/j.entcs.2010.08.008 | DOI Listing |
Med Phys
January 2025
Department of Engineering Physics, Tsinghua University, Beijing, China.
Background: X-ray grating-based dark-field imaging can sense the small angle scattering caused by object's micro-structures. This technique is sensitive to the porous microstructure of lung alveoli and has the potential to detect lung diseases at an early stage. Up to now, a human-scale dark-field CT (DF-CT) prototype has been built for lung imaging.
View Article and Find Full Text PDFGeroscience
January 2025
Department of Neurology, Ewha Womans University Mokdong Hospital, Ewha Womans University College of Medicine, Seoul, Republic of Korea.
Background: Superagers, older adults with exceptional cognitive abilities, show preserved brain structure compared to typical older adults. We investigated whether superagers have biologically younger brains based on their structural integrity.
Methods: A cohort of 153 older adults (aged 61-93) was recruited, with 63 classified as superagers based on superior episodic memory and 90 as typical older adults, of whom 64 were followed up after two years.
Environ Sci Pollut Res Int
January 2025
Grupo de Investigación Materiales Con Impacto (Mat&Mpac), Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, 050026, Medellín, Colombia.
This study shows the efficiency of WH-C450, an adsorbent obtained from water hyacinth (WH) biomass, in the removal of sulfamethoxazole (SMX) from aqueous solutions. The process involves calcination of WH at 450 °C to produce an optimal adsorbent material capable of removing up to 73% of SMX and maximum SMX adsorption capacity of 132.23 mg/g.
View Article and Find Full Text PDFJ Imaging Inform Med
January 2025
Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland.
Analysis of the symmetry of the brain hemispheres at the level of individual structures and dominant tissue features has been the subject of research for many years in the context of improving the effectiveness of imaging methods for the diagnosis of brain tumor, stroke, and Alzheimer's disease, among others. One useful approach is to reliably determine the midline of the brain, which allows comparative analysis of the hemispheres and uncovers information on symmetry/asymmetry in the relevant planes of, for example, CT scans. Therefore, an effective method that is robust to various geometric deformations, artifacts, varying noise characteristics, and natural anatomical variability is sought.
View Article and Find Full Text PDFBehav Res Methods
January 2025
CogNosco Lab, Department of Psychology and Cognitive Sciences, University of Trento, Trento, Italy.
We introduce EmoAtlas, a computational library/framework extracting emotions and syntactic/semantic word associations from texts. EmoAtlas combines interpretable artificial intelligence (AI) for syntactic parsing in 18 languages and psychologically validated lexicons for detecting the eight emotions in Plutchik's theory. We show that EmoAtlas can match or surpass transformer-based natural language processing techniques, BERT or large language models like ChatGPT 3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!