Mitochondrial complexes I, III(2), and IV from human cytotrophoblast and syncytiotrophoblast associate to form supercomplexes or respirasomes, with the following stoichiometries: I(1):(III(2))(1) and I(1):(III(2))(1-2):IV(1-4). The content of respirasomes was similar in both cell types after isolating mitochondria. However, syncytiotrophoblast mitochondria possess low levels of dimeric complex V and do not have orthodox cristae morphology. In contrast, cytotrophoblast mitochondria show normal cristae morphology and a higher content of ATP synthase dimer. Consistent with the dimerizing role of the ATPase inhibitory protein (IF(1)) (García, J. J., Morales-Ríos, E., Cortés-Hernandez, P., and Rodríguez-Zavala, J. S. (2006) Biochemistry 45, 12695-12703), higher relative amounts of IF(1) were observed in cytotrophoblast when compared with syncytiotrophoblast mitochondria. Therefore, there is a correlation between dimerization of complex V, IF(1) expression, and the morphology of mitochondrial cristae in human placental mitochondria. The possible relationship between cristae architecture and the physiological function of the syncytiotrophoblast mitochondria is discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3129172PMC
http://dx.doi.org/10.1074/jbc.M111.252056DOI Listing

Publication Analysis

Top Keywords

syncytiotrophoblast mitochondria
16
cristae morphology
12
mitochondria
7
syncytiotrophoblast
5
atypical cristae
4
morphology
4
morphology human
4
human syncytiotrophoblast
4
mitochondria role
4
role complex
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!