Bone morphogenetic protein (BMP) signaling is increasingly implicated in immune cell differentiation and function; however, direct in vivo evidence for such a role is still missing. In this article, we report that Twisted gastrulation (TWSG1), an extracellular regulator of BMP signaling, is expressed in activated B cells and regulates T-independent B cell responses in the mouse. Twsg1-deficient B cells mount stronger T-independent type 2 responses reflected as increased IgM levels and numbers of Ag-specific IgM-secreting cells. BCR stimulation of Twsg1-deficient B cells results in hyperproliferation, hyperresponsiveness, and decreased apoptosis, whereas TLR stimulation results in hyperproliferation and increased IgG3 production. These changes are reflected on the molecular level by increased transcription of Bcl-6, Pax5, and the BMP-responsive gene Id-2. The TWSG1 effects on B cells appear to be cell intrinsic, suggesting that Twsg1 expression in B cells serves to interpret BMP signals on a per-cell basis. In summary, our observations on the role of TWSG1 in B cell function is opening new paths toward the exploration of the role of BMP signaling in immunological processes.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.1001833DOI Listing

Publication Analysis

Top Keywords

bmp signaling
12
twisted gastrulation
8
twsg1-deficient cells
8
cells
6
cell
5
involvement twisted
4
gastrulation cell-independent
4
cell-independent plasma
4
plasma cell
4
cell production
4

Similar Publications

Unlabelled: BACKGROUND CERVUS ELAPHUS SIBIRICUS: (CES) has been traditionally used in Korean clinics to promote fracture healing based on its function of tonifying the kidneys and strengthening bones. However, experimental data supporting its efficacy are still insufficient. The aim of this study investigated the bone-union properties of CES in a femoral fracture animal model and its corresponding molecular mechanisms.

View Article and Find Full Text PDF

Background: Bioengineering of human teeth for replacement is an appealing regenerative approach in the era of gene therapy. Developmentally regulated transcription factors hold promise in the quest because these transcriptional regulators constitute the gene regulatory networks driving cell fate determination. Atonal homolog 1 (Atoh1) is a transcription factor of the basic helix-loop-helix (bHLH) family essential for neurogenesis in the cerebellum, auditory hair cell differentiation, and intestinal stem cell specification.

View Article and Find Full Text PDF

Polycomb Repressive Complex 1 (PRC1) is a family of epigenetic regulators critical for mammalian development. Elucidating PRC1 composition and function across cell types and developmental stages is key to understanding the epigenetic regulation of cell fate determination. In this study, we discovered POGZ, a prominent Autism Spectrum Disorder (ASD) risk factor, as a novel component of PRC1.

View Article and Find Full Text PDF

Teleost fish, such as Poecilia latipinna, exhibit remarkable regenerative capabilities, making them excellent models for studying tissue regrowth. They regenerate body parts like the tail fin through epimorphic regeneration, involving wound healing, blastema formation (a pool of proliferative cells), and tissue differentiation. Bone Morphogenetic Protein (BMP) and Fibroblast Growth Factor (FGF) signaling pathways play crucial roles in this process, but their specific functions during blastema formation remain unclear.

View Article and Find Full Text PDF

Bone regeneration: The influence of composite HA/TCP scaffolds and electrical stimulation on TGF/BMP and RANK/RANKL/OPG pathways.

Injury

January 2025

University Center of Hermínio Ometto Foundation, FHO, Araras 13607-339, SP, Brazil; Division of Dermatology, Department of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo 05508-060, Brazil; Graduate Program of Orthodontics, University Center of Hermínio Ometto Foundation, FHO, Araras 13607-339, SP, Brazil. Electronic address:

The repair of critical-sized bone defects represents significant clinical challenge. An alternative approach is the use of 3D composite scaffolds to support bone regeneration. Hydroxyapatite (HA) and tri-calcium phosphate (β-TCP), combined with polycaprolactone (PCL), offer promising mechanical resistance and biocompatibility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!