In vivo observations of microcirculatory behavior during autoregulation and adaptation to varying myocardial oxygen demand are scarce in the human coronary system. This study assessed microvascular reactions to controlled metabolic and pressure provocation [bicycle exercise and external counterpulsation (ECP)]. In 20 healthy subjects, quantitative myocardial contrast echocardiography and arterial applanation tonometry were performed during increasing ECP levels, as well as before and during bicycle exercise. Myocardial blood flow (MBF; ml·min(-1)·g(-1)), the relative blood volume (rBV; ml/ml), the coronary vascular resistance index (CVRI; dyn·s·cm(-5)/g), the pressure-work index (PWI), and the pressure-rate product (mmHg/min) were assessed. MBF remained unchanged during ECP (1.08 ± 0.44 at baseline to 0.92 ± 0.38 at high-level ECP). Bicycle exercise led to an increase in MBF from 1.03 ± 0.39 to 3.42 ± 1.11 (P < 0.001). The rBV remained unchanged during ECP, whereas it increased under exercise from 0.13 ± 0.033 to 0.22 ± 0.07 (P < 0.001). The CVRI showed a marked increase under ECP from 7.40 ± 3.38 to 11.05 ± 5.43 and significantly dropped under exercise from 7.40 ± 2.78 to 2.21 ± 0.87 (both P < 0.001). There was a significant correlation between PWI and MBF in the pooled exercise data (slope: +0.162). During ECP, the relationship remained similar (slope: +0.153). Whereas physical exercise decreases coronary vascular resistance and induces considerable functional capillary recruitment, diastolic pressure transients up to 140 mmHg trigger arteriolar vasoconstriction, keeping MBF and functional capillary density constant. Demand-supply matching was maintained over the entire ECP pressure range.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpheart.01283.2010DOI Listing

Publication Analysis

Top Keywords

metabolic pressure
8
human coronary
8
bicycle exercise
8
coronary vascular
8
vascular resistance
8
remained unchanged
8
unchanged ecp
8
functional capillary
8
exercise
7
ecp
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!