Chemotactic movement of myofibroblasts is recognized as a common means for their sequestration to the site of tissue injury. Following myocardial infarction (MI), recruitment of cardiac myofibroblasts to the infarct scar is a critical step in wound healing. Contractile myofibroblasts express embryonic smooth muscle myosin, α-smooth muscle actin, as well as collagens I and III. We examined the effects of cardiotrophin-1 (CT-1) in the induction of primary rat ventricular myofibroblast motility. Changes in membrane potential (E(m)) and Ca(2+) entry were studied to reveal the mechanisms for induction of myofibroblast migration. CT-1-induced cardiac myofibroblast cell migration, which was attenuated through the inhibition of JAK2 (25 μM AG490), and myosin light chain kinase (20 μM ML-7). Inhibition of K(+) channels (1 mM tetraethylammonium or 100 μM 4-aminopyridine) and nonselective cation channels by 10 μM gadolinium (Gd(3+)) significantly reduced migration in the presence of CT-1. CT-1 treatment caused a significant increase in myosin light chain phosphorylation, which could be inhibited by incubation in Ca(2+)-free conditions or by application of AG490, ML-7, and W7 (100 μM; calmodulin inhibitor). Monitoring myofibroblast membrane potential with potentiometric fluorescent DiBAC(4)(3) dye revealed a biphasic response to CT-1 consisting of an initial depolarization followed by hyperpolarization. Increased intracellular Ca(2+), as assessed by fluo 3, occurred immediately after membrane depolarization and attenuated at the time of maximal hyperpolarization. CT-1 exerts chemotactic effects via multiple parallel signaling modalities in ventricular myofibroblasts, including changes in membrane potential, alterations in intracellular calcium, and activation of a number of intracellular signaling pathways. Further study is warranted to determine the precise role of K(+) currents in this process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpheart.01041.2010 | DOI Listing |
Cytoskeleton (Hoboken)
January 2025
Department of Life Science, Faculty of Science, Gakushuin University, Mejiro, Tokyo, Japan.
Cytokinesis in animal and fungal cells requires the contraction of actomyosin-based contractile rings formed in the division cortex of the cell during late mitosis. However, the detailed mechanism remains incompletely understood. Here, we aim to develop a novel cell-free system by encapsulating cell extracts obtained from fission yeast cells within lipid vesicles, which subsequently leads to the formation of a contractile ring-like structure inside the vesicles.
View Article and Find Full Text PDFChem Biol Interact
January 2025
Department of Orthopedics, The Affiliated Wuxi Clinical College of Nantong University, Jiangsu, 214000, China. Electronic address:
This study systematically evaluated the toxic effects of fluconazole on the cardiovascular development of zebrafish. Zebrafish embryos were treated with different concentrations of fluconazole (200, 400, and 800 μg/ml) to observe its impact on heart development, reactive oxygen species (ROS) generation, apoptosis, and hemoglobin production. The results showed that as the concentration of fluconazole increased, significant changes in zebrafish heart structure were observed, along with a notable reduction in heart rate.
View Article and Find Full Text PDFJ Ethnopharmacol
January 2025
State Key Laboratory of Southwestern Chinese Medicine Resources, School of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China. Electronic address:
Ethnopharmacological Relevance: The rhizomes of Curcuma phaeocaulis Val. are a Rhizoma curcumae source in Chinese pharmacopoeia, and this traditional Chinese medicine has been extensively used in China to promote blood circulation and remove blood stasis. However, little is known regarding the vasodilatory effects and underlying mechanisms.
View Article and Find Full Text PDFComp Biochem Physiol Part D Genomics Proteomics
January 2025
National Engineering Research Laboratory of marine biotechnology and Engineering, Ningbo University, Zhejiang, Ningbo 315211, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Zhejiang, Ningbo 315211, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Zhejiang, Ningbo 315211, China. Electronic address:
Pampus argenteus, a species distributed throughout the Indo-West Pacific, plays a significant role in the yield of aquaculture species. However, cultured P. argenteus has always been characterised by unbalanced growth synchronisation among individuals, slow growth rate, and lack of excellent germplasm resources.
View Article and Find Full Text PDFPhytomedicine
January 2025
State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China. Electronic address:
Background: Dairy mastitis, a prevalent condition affecting dairy cattle, represents a significant challenge to both animal welfare and the quality of dairy products. However, current treatment options remain limited. Stigmasterol (ST) is a bioactive component of Prunella vulgaris L.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!