Background: In a 12-month phase 3 study in patients with relapsing-remitting multiple sclerosis (RRMS), TRANSFORMS, fingolimod showed greater efficacy on relapse rates and MRI outcomes compared with interferon beta-1a. We had two aims in our extension: to compare year 2 with year 1 in the switched patients to assess the effect of a change from interferon beta-1a to fingolimod, and to compare over 24 months the treatment groups as originally randomised to assess the effect of delaying the start of treatment with fingolimod.
Methods: Patients randomly assigned to receive 0.5 mg or 1.25 mg daily oral fingolimod in the core study continued with the same treatment in our extension; patients who originally received 30 μg weekly intramuscular interferon beta-1a were randomly reassigned (1:1) to receive either 0.5 mg or 1.25 mg fingolimod. The initial randomisation and dose of fingolimod assigned for the extension remained masked to the patients and investigators. As in the core study, re-randomisation was done centrally in blocks of six and stratified according to site. Our efficacy endpoints were annualised relapse rate (ARR), disability progression, and MRI outcomes. Our within-group analyses were based on the intention-to-treat and safety populations that entered our extension study. Our between-group analyses were based on the intention-to-treat and safety populations from the core study. This study is registered with ClinicalTrials.gov, number NCT00340834.
Findings: 1027 patients entered our extension and received the study drug, and 882 completed 24 months of treatment. Patients receiving continuous fingolimod showed persistent benefits in ARR (0.5 mg fingolimod [n=356], 0.12 [95% CI 0.08-0.17] in months 0-12 vs 0.11 [0.08-0.16] in months 13-24; 1.25 mg fingolimod [n=330], 0.15 [0.10-0.21] vs 0.11 [0.08-0.16]; however, in patients who initially received interferon beta-1a, ARR was lower after switching to fingolimod compared with the previous 12 months (interferon beta-1a to 0.5 mg fingolimod [n=167], 0.31 [95% CI 0.22-0.43] in months 0-12 vs 0.22 [0.15-0.31], in months 13-24 p=0.049; interferon beta-1a to 1.25 mg fingolimod [n=174], 0.29 [0.20-0.40] vs 0.18 [0.12-0.27], p=0.024). After switching to fingolimod, numbers of new or newly enlarging T2 and gadolinium (Gd)-enhancing T1 lesions were significantly reduced compared with the previous 12 months of interferon beta-1a therapy (p<0.0001 for T2 lesions at both doses; p=0.002 for T1 at 0.5 mg; p=0.011 for T1 at 1.25 mg), and the pattern of adverse events shifted towards that typical for fingolimod. Over 24 months, in continuous fingolimod groups compared with the group that switched from interferon beta-1a to fingolimod, we recorded lower ARRs (0.18 [95% CI 0.14-0.22] for 0.5 mg; 0.20 [0.16-0.25] for 1.25 mg; 0.33 [0.27-0.39] for the switch group; p<0.0001 for both comparisons), fewer new or newly enlarged T2 lesions (p=0.035 for 0.5 mg, p=0.068 for 1.25 mg), and fewer patients with Gd-enhancing T1 lesions (p=0.001 for 0.5 mg fingolimod vs switch group; p=0.002 for 1.25 mg fingolimod vs switch group). There was no benefit on disability progression.
Interpretation: Switching from interferon beta-1a to fingolimod led to enhanced efficacy with no unexpected safety concerns. Compared with patients switched from interferon beta-1a to fingolimod, continuous treatment with fingolimod for 2 years provides a sustained treatment effect with improved clinical and MRI outcomes.
Funding: Novartis Pharma AG.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/S1474-4422(11)70099-0 | DOI Listing |
Am J Respir Cell Mol Biol
December 2024
Keio University School of Medicine, Division of Pulmonary Medicine, Department of Medicine, Tokyo, Japan.
Airway epithelial cells (AECs) play an essential role in the immune response during bacterial pneumonia. Secreted and transmembrane 1a (Sectm1a) is specifically expressed in AECs during early (SP) infection. However, its function remains largely unexplored.
View Article and Find Full Text PDFClin Pharmacol Ther
November 2024
Department of Pharmaceutical Health Outcomes and Policy, College of Pharmacy, University of Houston, Houston, Texas, USA.
In patients with multiple sclerosis (MS), infections represent a significant concern, particularly given the immunomodulatory effects of disease-modifying agents (DMAs). High-efficacy DMAs (heDMAs) play a pivotal role in delaying MS progression, yet their use also raises concerns regarding the risk of infection. This study aimed to compare the infection risk with the use of heDMA and moderate-efficacy disease-modifying agents (meDMAs) in MS patients.
View Article and Find Full Text PDFBladder (San Franc)
October 2024
Lexington VA Health Care System, Research and Development, Lexington, KY, USA.
Background: Repeated intravesical activation of protease-activated receptor-4 (PAR4) serves as a model of persistent bladder hyperalgesia (BHA) in mice, which lasts several days after the final stimulus. Spinal macrophage migration inhibitory factor (MIF) and high mobility group box 1 (HMGB1) are critical mediators in the persistence of BHA.
Objective: We aimed to identify effective systemic treatments for persistent BHA using antagonists or transgenic deletions.
Ther Adv Neurol Disord
October 2024
Department of Neurology, Focus Program Translational Neuroscience, Rhine-Main Neuroscience Network, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, Mainz 55131, Germany.
Background: Interferon-beta (IFN-β) still plays a fundamental role in immunomodulation of people with multiple sclerosis (MS) with low disease activity and in clinically isolated syndrome (CIS). In 2014, pegylated (PEG) interferon was licensed by the European Medicines Agency (EMA) for relapsing-remitting MS (RRMS), enabling a lower dosing frequency.
Objectives: Our retrospective study compares laboratory findings and adverse events between subcutaneous (sc.
J Manag Care Spec Pharm
November 2024
Division of General Internal Medicine, University of Pittsburgh, Pittsburgh, PA.
Background: Outcomes-based agreements (OBAs) are agreements between payers and manufacturers in which payment for medications is tied to patient outcomes. These contracts aim to measure the value of prescription medications on predefined clinical indicators in real-world patient populations. OBAs are gaining traction in the United States as the health care industry shifts from volume-based to value-based care.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!