A strategy has been developed for creating Saccharomyces cerevisiae strains with a high RNA content by following a three-step breeding procedure. In the first step, an S. cerevisiae disruptant of the RRN10 gene, one of the components of the UAF (upstream activation factor) complex of rRNA transcription, was constructed and showed severely slow growth. In the second step, seven suppressors were isolated that restored the slow growth of the Δrrn10 disruptant. Genetic analysis revealed that each of the seven suppressors that were isolated appeared to have dominant and multiple mutations. The specific growth rate of those suppressors was increased approximately two-fold as compared with the Δrrn10 parental strain. The absolute RNA content showed that the suppressors had an RNA content 32-56% higher than that of the Δrrn10 parental strain. In the last step, the RRN10 wild-type gene was integrated into chromosome V of each of the original suppressors. The total RNA content of the integrants was also 1.4- to 2.3-fold higher than the wild-type strain. In conclusion, since yeast RNA is the source of 5'-IMP and 5'-GMP that enhance the delicious taste in certain types of food, like soups and sauces, the strategy taken in this study provides effective approach to breed S. cerevisiae strains producing a higher content of RNA that will contribute to yeast food biotechnology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiosc.2011.03.011 | DOI Listing |
Transl Stroke Res
January 2025
Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
Ischemic stroke is a worldwide disease with high mortality and morbidity. Kv7/KCNQ channels are key modulators of neuronal excitability and microglia function, and activation of Kv7/KCNQ channels has emerged as a potential therapeutic avenue for ischemic stroke. In the present study, we focused on a new Kv7/KCNQ channel opener QO-83 on the stroke outcomes and its therapeutic potential.
View Article and Find Full Text PDFMetabolites
January 2025
Key Laboratory of Mariculture and Enhancement, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China.
The inherent deficiency of phospholipids in limits its nutritional value as live prey for marine fish larvae. In our previous study, we optimized a phospholipid enrichment method by incubating nauplii with 10 g of soybean lecithin per m of seawater for 12 h, significantly enhancing their phospholipid content. : The present study evaluated the impact of this enrichment on yellow drum () larvae, focusing on growth performance, intestinal morphology, body composition, weaning success, and desiccation stress resistance.
View Article and Find Full Text PDFJ Microbiol Biotechnol
December 2024
Department of Biological Sciences and Biotechnology, Hannam University, Daejeon 34430, Republic of Korea.
A Gram-stain-negative, facultative anaerobic rods, designated as strain 219JJ12-13, was isolated from a marine sponge, , in Jeju-do, Republic of Korea. The cells displayed catalase and oxidase activity and were non-motile. Strain 219JJ12-13 grew at 10-37°C (optimum, 25-30°C), pH 6.
View Article and Find Full Text PDFGenes Genomics
January 2025
Department of Plant Resources, College of Industrial Science, Kongju National University, Yesan, 32439, Republic of Korea.
Background: Soil salinity has been a serious threat to agricultural production worldwide, including soybeans. Glycine soja, the wild ancestor of cultivated soybeans, harbors high genetic diversity and possesses attractive rare alleles.
Objective: We conducted a transcriptome analysis of G.
J Ethnopharmacol
January 2025
Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning, China; College of Pharmacy, Shenzhen Technology University, Shenzhen, Guangdong, China. Electronic address:
Ethnopharmacological Relevance: Shilong Qingxue Granule (SQG), a traditional Chinese medicine, effectively treats the secondary neurological damage and functional deficits caused by cerebral hemorrhage, though its exact mechanism remains unclear.
Aim Of The Study: This study aimed to investigate the effects of SQG and its mechanisms.
Materials And Methods: we evaluated the effects of SQG and its extracts on glutamate induced nerve damage using in vivo and in vitro models.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!