Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In response to a chronic high plasma concentration of long-chain fatty acids (FAs), the heart is forced to increase the uptake of FA at the cost of glucose. This switch in metabolic substrate uptake is accompanied by an increased presence of the FA transporter CD36 at the cardiac plasma membrane and over time results in the development of cardiac insulin resistance and ultimately diabetic cardiomyopathy. FA can interact with peroxisome proliferator-activated receptors (PPARs), which induce upregulation of the expression of enzymes necessary for their disposal through mitochondrial β-oxidation, but also stimulate FA uptake. This then leads to a further increase in FA concentration in the cytoplasm of cardiomyocytes. These metabolic changes are supposed to play an important role in the development of cardiomyopathy. Although the onset of this pathology is an increased FA utilization by the heart, the subsequent lipid overload results in an increased production of reactive oxygen species (ROS) and accumulation of lipid intermediates such as diacylglycerols (DAG) and ceramide. These compounds have a profound impact on signaling pathways, in particular insulin signaling. Over time the metabolic changes will introduce structural changes that affect cardiac contractile characteristics. The present mini-review will focus on the lipid-induced changes that link metabolic perturbation, characteristic for type 2 diabetes, with cardiac remodeling and dysfunction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plefa.2011.04.018 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!