Transfer learning of classification rules for biomarker discovery and verification from molecular profiling studies.

J Biomed Inform

Intelligent Systems Program, University of Pittsburgh, Pittsburgh, PA, United States; Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, United States. Electronic address:

Published: December 2011

We present a novel framework for integrative biomarker discovery from related but separate data sets created in biomarker profiling studies. The framework takes prior knowledge in the form of interpretable, modular rules, and uses them during the learning of rules on a new data set. The framework consists of two methods of transfer of knowledge from source to target data: transfer of whole rules and transfer of rule structures. We evaluated the methods on three pairs of data sets: one genomic and two proteomic. We used standard measures of classification performance and three novel measures of amount of transfer. Preliminary evaluation shows that whole-rule transfer improves classification performance over using the target data alone, especially when there is more source data than target data. It also improves performance over using the union of the data sets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3706089PMC
http://dx.doi.org/10.1016/j.jbi.2011.04.009DOI Listing

Publication Analysis

Top Keywords

data sets
12
target data
12
biomarker discovery
8
profiling studies
8
data
8
classification performance
8
transfer
6
transfer learning
4
learning classification
4
rules
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!