Four novel double-stranded RNA segments were detected in a Verticillium dahliae Kleb. strain (V. dahliae isolate 0-21), a causal fungal agent of Verticillium wilt disease of cotton. Each dsRNA genome segment contains a single large open reading frame (ORF) that encodes a distinctive protein with modest levels of sequence similarities to the corresponding putative proteins in the genus Chrysovirus. These include an RNA-dependent RNA polymerase (RdRp), a coat protein, an undefined replication-related protein and an ovarian tumor domain peptidase. Phylogenetic analysis of the four putative proteins unanimously indicated that they are evolutionarily related to viruses in Chrysovirus. The 5'- and 3'-untranslated regions of the four dsRNAs share highly similar internal sequence and contain conserved sequence stretches of UGAUAAAAAA(/U)UG(/U)AAAAA- (in the 5'-UTR) and -UUUACUACU (in the 3'-UTR), indicating that they have a common virus origin. Indeed, isometric virus-like particles (VLPs) with a diameter of approximately 34nm were extracted from the fungal mycelia, and the four dsRNA segments were also detected in the virus-like particle (VLP) fraction. These results suggest that the mycovirus with four different dsRNA genome segments from the fungal isolate 0-21 is a new member of the genus Chrysovirus. We named the virus Verticillium dahliae chrysovirus 1 (VdCV1).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.virusres.2011.04.029 | DOI Listing |
Int J Mol Sci
December 2024
College of Agricultural, Tarim University, Alar 843300, China.
wilt (VW) caused by (Vd) is a devastating fungal cotton disease characterized by high pathogenicity, widespread distribution, and frequent variation. It leads to significant losses in both the yield and quality of cotton. Identifying key non-synonymous single nucleotide polymorphism (SNP) markers and crucial genes associated with VW resistance in and , and subsequently breeding new disease-resistant varieties, are essential for VW management.
View Article and Find Full Text PDFFungal Genet Biol
January 2025
Team of Crop Verticillium wilt, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China. Electronic address:
The vascular wilt fungus Verticillium dahliae is a destructive soil-borne pathogen that causes yield loss on various economically important crops. Membrane-spanning sensor protein SLN1 have been demonstrated to contribute to virulence in varying degrees among numerous devastating fungal pathogens. However, the biological function of SLN1 in V.
View Article and Find Full Text PDFMicroorganisms
December 2024
Laboratory of Plant Pathology, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece.
Endophytic microbes in medicinal plants often possess beneficial traits for plant health. This study focuses on the bacterial endophyte strain B.L.
View Article and Find Full Text PDFMicroorganisms
November 2024
College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010019, China.
Sunflower Wilt (SVW) caused by is a significant threat to sunflower production in China. This soilborne disease is difficult to control. It has been observed that delayed sowing reduces the severity of SVW on different varieties and across various locations.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
The Key Laboratory of Oasis Eco-Agriculture, Agriculture College, Shihezi University, Shihezi 832000, China.
is a soil-borne phytopathogenic fungus causing destructive Verticillium wilt disease that greatly threats cotton production worldwide. The mechanism of cotton resistance to Verticillium wilt is very complex and requires further research. In this study, RNA-sequencing was used to investigate the defense responses of cotton leaves using varieties resistant (Zhongzhimian 2, or Z2) or susceptible (Xinluzao 7, or X7) to .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!