High-throughput, homogeneous, fluorescence intensity-based measurement of adenosine diphosphate and other ribonucleoside diphosphates with nanomolar sensitivity.

Anal Biochem

Bioscience Department, Infection Innovative Medicines, AstraZeneca R&D Boston, Waltham, MA 02451, USA.

Published: August 2011

A new, homogeneous, high-throughput-compatible assay method is described for the fluorescence-based quantitation of nanomolar concentrations of ribonucleoside diphosphates (rNDPs). The principle of the method is the conversion of the rNDPs to RNA by the enzyme polynucleotide phosphorylase (EC 2.7.7.8) and detection of the RNA by the increased fluorescence of a commercial nucleic acid detection dye. A commercial RNA homopolymer complementary to the RNA product is included to increase the sensitivity for ADP and UDP. Standard curves for nanomolar concentrations of ADP, UDP, GDP, and CDP are shown. The assay detected 75 nM ADP produced by the pyruvate kinase-catalyzed phosphorylation of pyruvate with a signal-to-baseline ratio of 2.8. The assay may be used in either a continuous or a discontinuous mode.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ab.2011.04.027DOI Listing

Publication Analysis

Top Keywords

ribonucleoside diphosphates
8
nanomolar concentrations
8
adp udp
8
high-throughput homogeneous
4
homogeneous fluorescence
4
fluorescence intensity-based
4
intensity-based measurement
4
measurement adenosine
4
adenosine diphosphate
4
diphosphate ribonucleoside
4

Similar Publications

Elucidating the role of pyrimidine metabolism in prostate cancer and its therapeutic implications.

Sci Rep

January 2025

Department of Emergency Medicine, Hengyang Medical School, The Affiliated Changsha Central Hospital, University of South China, Changsha, Hunan, China.

Our study aims to investigate the role of pyrimidine metabolism in prostate cancer and its associations with the immune microenvironment, drug sensitivity, and tumor mutation burden. Through transcriptomic and single-cell RNA sequencing analyses, we explored metabolic pathway enrichment, immune infiltration patterns, and differential gene expression in prostate cancer samples. The results showed that pyrimidine metabolism-related genes were significantly upregulated in the P2 subgroup compared to the P1 subgroup, with enhanced metabolic activity observed in basal and luminal epithelial cells.

View Article and Find Full Text PDF

RRM2 Regulates Hepatocellular Carcinoma Progression Through Activation of TGF-β/Smad Signaling and Hepatitis B Virus Transcription.

Genes (Basel)

December 2024

State Key Lab of Pharmaceutical Biotechnology (SKLPB), College of Life Sciences in Nanjing University (Xianlin Campus), Nanjing University, Nanjing 210046, China.

Background: Hepatocellular carcinoma (HCC) is a type of malignant tumor with high morbidity and mortality. Untimely treatment and high recurrence are currently the major challenges for HCC. The identification of potential targets of HCC progression is crucial for the development of new therapeutic strategies.

View Article and Find Full Text PDF

The adenosinergic pathway converting endogenous ATP to adenosine (ADO) is a major immunosuppressive pathway in cancer. Emerging data indicate that plasma small extracellular vesicles (sEV) express CD39 and CD73 and produce ADO. Using a noninvasive, highly sensitive newly developed assay, metabolism of N-etheno-labeled eATP, eADP or eAMP by ecto-nucleotidases on the external surface of sEV was measured using high pressure liquid chromatography with fluorescence detection.

View Article and Find Full Text PDF

Bladder cancer (BLCA) is the tenth most common cancer worldwide, characterized by its high recurrence and progression rates. Thus, identifying prognostic biomarkers and understanding its underlying mechanisms are imperative to enhance patient outcomes. In this study, we aimed to investigate the prognostic significance, expression, functional activity, and underlying mechanisms of RRM2 in BLCA.

View Article and Find Full Text PDF

Tyrosine kinase inhibitors (TKIs), such as sunitinib, have emerged as promising agents in renal cell carcinoma (RCC) treatment, particularly in patients at advanced/metastatic clinical stages. However, acquired resistance to sunitinib is common following prolonged clinical treatment in RCC. Increasing evidence has demonstrated a strong correlation between inhibitor of nuclear factor kappa B kinase subunit epsilon (IKBKE) and cancer progression as well as drug resistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!