Objectives: Upregulation of glycolysis has been demonstrated in multiple tumor types. Glucose deprivation results in diminished intracellular ATP; this is counteracted by AMPK activation during energy deficiency to restore ATP levels. We sought to determine whether glucose deprivation could induce cytotoxicity in ovarian cancer cells through activation of AMPK, and whether AMPK activators could mimic glucose deprivation induced cytotoxicity.
Methods: Sensitivity to 2DG induced cytotoxicity and glucose deprivation was determined in a panel of ovarian cancer cells. Cellular growth rate, rate of glucose uptake, and response to glucose deprivation were determined. Expression of Glut-1, HIF1-α, AMPK and Akt was determined by immunoblotting.
Results: Incubation of ovarian cancer cells with glucose-free media, 2-DG and AMPK activators resulted in cell death. The glycolytic phenotype of ovarian cancer cells was present in both normoxic and hypoxic conditions, and did not correlate with HIF1-α expression levels. Sensitivity to glucose deprivation was independent of growth rate, rate of glucose uptake, and appeared to be dependent upon constitutive activation of Akt. Glucose deprivation resulted in activation of AMPK and inhibition of Akt phosphorylation. Treatment with AMPK activators resulted in AMPK activation, Akt inhibition, and induced cell death in ovarian cancer cells.
Conclusions: Ovarian cancer cells are glycolytic as compared to normal, untransformed cells, and are sensitive to glucose deprivation. Because ovarian cancer cells are dependent upon glucose for growth and survival, treatment with AMPK activators that mimic glucose deprivation may result in broad clinical benefits to ovarian cancer patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ygyno.2011.04.024 | DOI Listing |
Am J Prev Cardiol
March 2025
Department of Preventive Medicine, Northwestern University, Chicago, IL, USA.
We examined whether neighborhood-level socioeconomic disadvantage per the Area Deprivation Index (ADI) was associated with maternal cardiovascular health (CVH) in early pregnancy per the American Heart Association Life's Essential 8 (LE8). This is a cross-sectional analysis from the prospective Nulliparous Pregnancy Outcomes Study-Monitoring Mothers-to-Be Heart Health Study (nuMoM2b-HHS) cohort. The exposure was the ADI in tertiles (T) from least (T1) to most (T3) socioeconomic disadvantage.
View Article and Find Full Text PDFExp Neurol
January 2025
Department of Neurosurgery, Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214000, China; Wuxi Medical Center of Nanjing Medical University, Wuxi 214000, China. Electronic address:
Ischemic stroke, resulting from the blockage or narrowing of cerebral vessels, causes brain tissue damage due to ischemia and hypoxia. Although reperfusion therapy is essential to restore blood flow, it may also result in reperfusion injury, causing secondary damage through mechanisms like oxidative stress, inflammation, and excitotoxicity. These effects significantly impact astrocytes, neurons, and endothelial cells, aggravating brain injury and disrupting the blood-brain barrier.
View Article and Find Full Text PDFFree Radic Biol Med
January 2025
Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China; Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, College of Medicine and Health Sciences, China Three Gorges University, Yichang, Hubei, China. Electronic address:
Cerebral ischemia-reperfusion injury (CIRI) has emerged as a hindrance for rehabilitation of ischemic stroke patients. Naotaifang (NTF) exhibits beneficial efficacy in alleviating inflammation and ferroptosis in vitro during CIRI. While the potential role of NTF in regulating mitochondrial dynamics in CIRI are not elucidated.
View Article and Find Full Text PDFBrain Res
January 2025
Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China. Electronic address:
Stroke remains a leading cause of disability and mortality worldwide, with mitochondrial dysfunction closely linked to ischemic injury. This study explores the Norad-Pum2-Mff axis as a key regulator of mitochondrial function following ischemia-reperfusion (I/R) injury. Using an oxygen-glucose deprivation/reoxygenation (OGD/R) model, Mff protein levels were significantly elevated post-OGD/R, while mRNA levels remained unchanged, suggesting post-transcriptional regulation.
View Article and Find Full Text PDFInt J Ophthalmol
January 2025
Department of Encephalopathy, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430070, Hubei Province, China.
Aim: To explore the neuroprotective effects of high mobility group box 2 () knockdown on retinal ganglion cells (RGCs) in the retinal ischemia-reperfusion injury (RIRI).
Methods: Oxygen-glucose deprivation (OGD)-injured RGCs from postnatal three-day C57BL/6 mice pups and high intraocular pressure (IOP)-induced RIRI mice were used as cellular and animal models of RIRI. The expression of HMGB2 in the retina of RIRI mice and OGD-injured RGCs was detected through reverse transcription-polymerase chain reaction (RT-qPCR) and Western blotting.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!