Leishmania chagasi, which causes visceral leishmaniasis in South America, is an obligate intracellular protozoan. Production of nitric oxide by macrophages during the inflammatory response is one of the main microbicidal mechanisms against this parasite. The goal of this study was to evaluate whether L. chagasi infection causes DNA damage in peripheral blood and spleen cells of Balb/c mice and whether such damage may be related to NO production. Balb/c mice were either infected with L. chagasi or maintained as controls. The single-cell gel electrophoresis (comet) assay was used to measure DNA damage in peripheral blood and spleen cells, and the Griess reaction was used to measure NO production in the spleen. L. chagasi infection induced DNA damage in peripheral blood and spleen cells of infected mice. Macrophages from the control group, challenged with L. chagasi, showed significantly (p<0.05) greater NO production, compared to non-challenged cells. Treatment of spleen cells with N(G)-monomethyl-l-arginine (LNMMA) caused a significant reduction of NO production and DNA damage (p<0.05). Our results indicate that L. chagasi induces DNA damage in the peripheral blood and spleen cells and that NO not only causes killing of the parasite but also induces DNA damage in adjacent cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mrgentox.2011.04.009DOI Listing

Publication Analysis

Top Keywords

dna damage
16
damage peripheral
12
peripheral blood
12
blood spleen
12
spleen cells
12
nitric oxide
8
chagasi infection
8
balb/c mice
8
chagasi
6
dna
4

Similar Publications

Background: Melanoma is a highly lethal form of skin cancer, and effective treatment remains a significant challenge. SPP86 is a novel potential therapeutic drug. Nonetheless, the specific influence of SPP86 on autophagy, particularly its mechanisms in the context of DNA damage and apoptosis in human melanoma cells, remains inadequately understood.

View Article and Find Full Text PDF

Amplified by the decline in antibiotic discovery, the rise of antibiotic resistance has become a significant global challenge in infectious disease control. Extraintestinal (ExPEC), known to be the most common instigators of urinary tract infections (UTIs), represent such global threat. Novel strategies for more efficient treatments are therefore desperately needed.

View Article and Find Full Text PDF

Background: B-cell specific Moloney MLV insertion site-1 (Bmi-1) belongs to the polycomb group (PcG) gene and is a transcriptional suppressor to maintain appropriate gene expression patterns during development. To investigate whether the Bmi-1 gene has a corrective effect on bone senescence induced in Bmi-1 mice through regulating the bone microenvironment.

Methods: Littermate heterozygous male and female mice (Bmi-1) were used in this study.

View Article and Find Full Text PDF

Objectives: To predict and characterize the three-dimensional (3D) structure of protein arginine methyltransferase 2 (PRMT2) using homology modeling, besides, the identification of potent inhibitors for enhanced comprehension of the biological function of this protein arginine methyltransferase (PRMT) family protein in carcinogenesis.

Materials And Methods: An method was employed to predict and characterize the three-dimensional structure. The bulk of PRMTs in the PDB shares just a structurally conserved catalytic core domain.

View Article and Find Full Text PDF

Imidazo based heterocyclic derivatives are considered as privileged scaffolds due to their presence in various pharmacologically active compounds and in marketed formulations. The present study reports toxicological evaluation of three imidazo based heterocyclic derivatives which are currently being investigated for their potential anticancer activity. Compounds IG-01-007, IG-01-008, and IG-01-009 were assessed for cytotoxicity, hemolysis, and DNA fragmentation activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!