Spatial organization of repetition rate processing in cat anterior auditory field.

Hear Res

Coleman Memorial Laboratory, W.M. Keck Center for Integrative Neuroscience, University of California, San Francisco, CA 94143-0732, United States.

Published: October 2011

Auditory cortex updates incoming information on a segment by segment basis for human speech and animal communication. Measuring repetition rate transfer functions (RRTFs) captures temporal responses to repetitive sounds. In this study, we used repetitive click trains to describe the spatial distribution of RRTF responses in cat anterior auditory field (AAF) and to discern potential variations in local temporal processing capacity. A majority of RRTF filters are band-pass. Temporal parameters estimated from RRTFs and corrected for characteristic frequency or latency dependencies are non-homogeneously distributed across AAF. Unlike the shallow global gradient observed in spectral receptive field parameters, transitions from loci with high to low temporal parameters are steep. Quantitative spatial analysis suggests non-uniform, circumscribed local organization for temporal pattern processing superimposed on global organization for spectral processing in cat AAF.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3175013PMC
http://dx.doi.org/10.1016/j.heares.2011.04.008DOI Listing

Publication Analysis

Top Keywords

repetition rate
8
processing cat
8
cat anterior
8
anterior auditory
8
auditory field
8
temporal parameters
8
temporal
5
spatial organization
4
organization repetition
4
processing
4

Similar Publications

Dynamic resistance exercise (RE) produces sinusoidal fluctuations in blood pressure, with hypotension and cerebral hypoperfusion commonly observed immediately following RE. Whether the cerebral vasculature adapts to these regular blood pressure challenges is unclear. This study examined the cerebrovascular response to post-dynamic RE orthostasis.

View Article and Find Full Text PDF

Electronically Controlled Dual-Wavelength Switchable SRS Fiber Amplifier in the NIR-II Region for Multispectral Photoacoustic Microscopy.

Laser Photon Rev

October 2024

Harvard Medical School, Boston, MA 02114, USA; Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Cardiology, Erasmus Medical Center, Rotterdam GD3015, The Netherlands; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.

Photoacoustic microscopy (PAM) is a high-resolution and non-invasive imaging modality that provides optical absorption contrast. By employing dual- or multiple-wavelength excitation, PAM extends its capabilities to offer valuable spectroscopic information. To achieve efficient multispectral PAM imaging, an essential requirement is a light source characterized by a high repetition rate and switching rate, a ≈microjoule pulse energy, and a ≈nanosecond pulse duration.

View Article and Find Full Text PDF

We report on continuous high-harmonic generation (HHG) at 1 kHz repetition rate from a liquid-sheet plasma mirror driven by relativistic-intensity near-single-cycle light transients. Through precise control of both the surface plasma density gradient and the driving light waveform, we can produce highly stable and reproducible extreme ultraviolet spectral quasi-continua, expected to correspond to the generation of stable kHz-trains of isolated attosecond pulses in the time domain. This confirms the exciting potential of liquid-sheet targets as one of the building blocks of future high-power attosecond lasers.

View Article and Find Full Text PDF

Transverse mode instability (TMI) significantly limits the power scaling of ytterbium-doped fiber lasers. In this Letter, what we believe to be a novel TMI mitigation strategy is proposed and demonstrated in a bidirectional output fiber laser. On the basis of the continuous wave (CW) pump, integrating a quasi-continuous wave (QCW) pump can effectively improve the TMI threshold of the system.

View Article and Find Full Text PDF

The Heisenberg-RIXS instrument at the European XFEL.

J Synchrotron Radiat

January 2025

Institute Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, 12489 Berlin, Germany.

Resonant inelastic X-ray scattering (RIXS) is an ideal X-ray spectroscopy method to push the combination of energy and time resolutions to the Fourier transform ultimate limit, because it is unaffected by the core-hole lifetime energy broadening. Also, in pump-probe experiments the interaction time is made very short by the same core-hole lifetime. RIXS is very photon hungry so it takes great advantage from high-repetition-rate pulsed X-ray sources like the European XFEL.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!