Background: In this paper we apply a novel agent-based simulation method in order to model intracellular reactions in detail. The simulations are performed within a virtual cytoskeleton enriched with further crowding elements, which allows the analysis of molecular crowding effects on intracellular diffusion and reaction rates. The cytoskeleton network leads to a reduction in the mobility of molecules. Molecules can also unspecifically bind to membranes or the cytoskeleton affecting (i) the fraction of unbound molecules in the cytosol and (ii) furthermore reducing the mobility. Binding of molecules to intracellular structures or scaffolds can in turn lead to a microcompartmentalization of the cell. Especially the formation of enzyme complexes promoting metabolic channeling, e.g. in glycolysis, depends on the co-localization of the proteins.

Results: While the co-localization of enzymes leads to faster reaction rates, the reduced mobility decreases the collision rate of reactants, hence reducing the reaction rate, as expected. This effect is most prominent in diffusion limited reactions. Furthermore, anomalous diffusion can occur due to molecular crowding in the cell. In the context of diffusion controlled reactions, anomalous diffusion leads to fractal reaction kinetics. The simulation framework is used to quantify and separate the effects originating from molecular crowding or the reduced mobility of the reactants. We were able to define three factors which describe the effective reaction rate, namely f diff for the diffusion effect, f volume for the crowding, and f access for the reduced accessibility of the molecules.

Conclusions: Molecule distributions, reaction rate constants and structural parameters can be adjusted separately in the simulation allowing a comprehensive study of individual effects in the context of a realistic cell environment. As such, the present simulation can help to bridge the gap between in vivo and in vitro kinetics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3123599PMC
http://dx.doi.org/10.1186/1752-0509-5-71DOI Listing

Publication Analysis

Top Keywords

molecular crowding
12
reaction rate
12
agent-based simulation
8
reaction rates
8
reduced mobility
8
reactions anomalous
8
anomalous diffusion
8
diffusion
6
reaction
6
mobility
5

Similar Publications

Mechanobiology of 3D cell confinement and extracellular crowding.

Biophys Rev

December 2024

Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland.

Cells and tissues are often under some level of confinement, imposed by the microenvironment and neighboring cells, meaning that there are limitations to cell size, volume changes, and fluid exchanges. 3D cell culture, increasingly used for both single cells and organoids, inherently impose levels of confinement absent in 2D systems. It is thus key to understand how different levels of confinement influences cell survival, cell function, and cell fate.

View Article and Find Full Text PDF

A simple and integrated fiber-optic real-time qPCR platform for remote and distributed detection of epidemic virus infection.

Biosens Bioelectron

January 2025

Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, China; College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China. Electronic address:

Quantitative polymerase chain reaction (qPCR) is a well-recognized technique for amplifying and quantifying nuclear acid, and its real-time monitoring capability, ultrahigh sensitivity, and accuracy make it a "golden-standard" tool in both molecular biology research and clinical diagnostics. However, current qPCR tests rely on bulky instrumentation and skilled laboratorians in centralized laboratories, which spatially and temporally separate the sample collection and test, leading to longer sample turnaround times (TATs) and limited working conditions. Herein, we propose an integrated optical fiber real-time polymerase chain reaction (iF-PCR) system that successfully allows convenient sample collection, rapid thermocycling, closed-loop thermal annealing, and real-time fluorescence detection in a tiny capillary reactor.

View Article and Find Full Text PDF

Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) is an open-source, powerful simulator with a customizable platform for extensive Langevin dynamics simulations. Here, we present a protocol for using LAMMPS to develop coarse-grained models of polymeric systems with macromolecular crowding, an integral part of any soft matter or biophysical system. We describe steps for installing software, using LAMMPS basic commands and code, and translocating polymers.

View Article and Find Full Text PDF

The formation of protein condensates (droplets) via liquid-liquid phase separation (LLPS) is a commonly observed phenomenon in vitro. Changing the environmental properties with cosolutes, molecular crowders, protein partners, temperature, pressure, etc. has been shown to favor or disfavor the formation of protein droplets by fine-tuning the water-water, water-protein, and protein-protein interactions.

View Article and Find Full Text PDF

The Balbiani body is formed by microtubule-controlled molecular condensation of Buc in early oogenesis.

Curr Biol

January 2025

Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem 9112102, Israel; Institute for Medical Research, Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel. Electronic address:

Vertebrate oocyte polarity has been observed for two centuries and is essential for embryonic axis formation and germline specification, yet its underlying mechanisms remain unknown. In oocyte polarization, critical RNA-protein (RNP) granules delivered to the oocyte's vegetal pole are stored by the Balbiani body (Bb), a membraneless organelle conserved across species from insects to humans. However, the mechanisms of Bb formation are still unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!