An investigation of the electrochemical activity of human white blood cells (WBC) for biofuel cell (BFC) applications is described. WBCs isolated from whole human blood were suspended in PBS and introduced into the anode compartment of a proton exchange membrane (PEM) fuel cell. The cathode compartment contained a 50 mM potassium ferricyanide solution. Average current densities between 0.9 and 1.6 μA cm-2 and open circuit potentials (Voc) between 83 and 102 mV were obtained, which were both higher than control values. Cyclic voltammetry was used to investigate the electrochemical activity of the activated WBCs in an attempt to elucidate the mechanism of electron transfer between the cells and electrode. Voltammograms were obtained for the WBCs, including peripheral blood mononuclear cells (PBMCs - a lymphocyte-monocyte mixture isolated on a Ficoll gradient), a B lymphoblastoid cell line (BLCL), and two leukemia cell lines, namely K562 and Jurkat. An oxidation peak at about 363 mV vs. SCE for the PMA (phorbol ester) activated primary cells, with a notable absence of a reduction peak was observed. Oxidation peaks were not observed for the BLCL, K562 or Jurkat cell lines. HPLC confirmed the release of serotonin (5-HT) from the PMA activated primary cells. It is believed that serotonin, among other biochemical species released by the activated cells, contributes to the observed BFC currents.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3113927PMC
http://dx.doi.org/10.1186/1754-1611-5-5DOI Listing

Publication Analysis

Top Keywords

biofuel cell
8
electrochemical activity
8
cell lines
8
k562 jurkat
8
activated primary
8
primary cells
8
cell
6
cells
6
metabolic biofuel
4
cell conversion
4

Similar Publications

GC/MS Fatty Acid Profile of Marine-Derived Actinomycetes from Extreme Environments: Chemotaxonomic Insights and Biotechnological Potential.

Mar Drugs

December 2024

Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, UNOVA University of Lisbon, 2829-516 Caparica, Portugal.

This study investigated the fatty acids (FA) profile of 54 actinomycete strains isolated from marine sediments collected off the Portugal continental coast, specifically from the Estremadura Spur pockmarks field, by GC/MS. Fatty acid methyl esters (FAMEs) were prepared from the ethyl acetate lipidic extracts of these strains and analyzed by gas chromatography-mass spectrometry (GC/MS), with FA identification performed using the NIST library. The identified FAs varied from C12:0 to C20:0, where 32 distinct FAs were identified, including 7 branched-chain fatty acids (BCFAs), 9 odd-chain fatty acids (OCFAs), 8 monounsaturated fatty acids (MUFAs), 6 saturated fatty acids (SFAs), 1 polyunsaturated fatty acid (PUFA), and 1 cyclic chain fatty acid (CCFA).

View Article and Find Full Text PDF

Maximizing saccharification efficiency of lignocellulose and minimizing the production costs associated with enzyme requirements are crucial for sustainable biofuel production. This study presents a novel semi-fed-batch saccharification method that uses a co-culture of and strain A9 to efficiently break down high solid-loading lignocellulosic biomass without the need for any external enzymes. This method optimizes saccharification efficiency and enhances glucose production from alkaline-treated rice straw, a representative lignocellulosic biomass.

View Article and Find Full Text PDF

Monoterpene -pinene exhibits significant potential as an alternative fuel, widely recognized for its affordability and eco-friendly nature. It demonstrates multiple biological activities and has a wide range of applications. However, the limited supply of pinene extracted from plants poses a challenge in meeting the needs of the aviation industry and other sectors.

View Article and Find Full Text PDF

Enhancing biobutanol production by optimizing acetone-butanol-ethanol fermentation from sorghum grains through strategic immobilization of amylolytic enzymes.

Bioresour Technol

January 2025

Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 81746-73441, Iran; Environmental Research Institute, University of Isfahan, Isfahan 81746-73441, Iran.

Tannin-containing sorghum grains, suitable for acetone-butanol-ethanol (ABE) production by Clostridium acetobutylicum, have required pretreatment to eliminate tannins inhibiting the strain's amylolytic activity. This study investigates biobutanol production enhancement by immobilizing enzymes on polydopamine-functionalized polyethersulfone (PES) membranes with magnetic nanoparticles for Separated Hydrolysis and Fermentation (SHF) and Simultaneous Saccharification and Fermentation (SSF) processes. After multi-stage hot water treatment, TG3 sorghum (from the third stage) was used, where the enzyme-immobilized PES membrane produced 4.

View Article and Find Full Text PDF

Pectin is a major component of plant cells walls. The extent to which pectin chains crosslink with one another determines crucial properties including cell wall strength, porosity, and the ability of small, biologically significant molecules to access the cell. Despite its importance, significant gaps remain in our comprehension, at the molecular level, of how pectin cross-links influence the mechanical and physical properties of cell walls.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!