We investigate a Bose-Fermi mixture in a three-dimensional optical lattice, trapped in a harmonic potential. Using generalized dynamical mean-field theory, which treats the Bose-Bose and Bose-Fermi interaction in a fully nonperturbative way, we show that for experimentally relevant parameters a peak in the condensate fraction close to the point of vanishing Bose-Fermi interaction is reproduced within a single-band framework. We identify two physical mechanisms contributing to this effect: the spatial redistribution of particles when the interspecies interaction is changed and the reduced phase space for strong interactions, which results in a higher temperature at fixed entropy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.106.155301 | DOI Listing |
Nat Commun
December 2024
Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Korea.
Fermi polarons are emerging quasiparticles when a bosonic impurity immersed in a fermionic bath. Depending on the boson-fermion interaction strength, the Fermi-polaron resonances exhibit either attractive or repulsive interactions, which impose further experimental challenges on understanding the subtle light-driven dynamics. Here, we report the light-driven dynamics of attractive and repulsive Fermi polarons in monolayer WSe devices.
View Article and Find Full Text PDFPhys Rev Lett
August 2024
Technical University of Munich, TUM School of Natural Sciences, Physics Department, 85748 Garching, Germany.
Heterostructures of two-dimensional transition metal dichalcogenides are emerging as a promising platform for investigating exotic correlated states of matter. Here, we propose to engineer Bose-Fermi mixtures in these systems by coupling interlayer excitons to doped charges in a trilayer structure. Their interactions are determined by the interlayer trion, whose spin-selective nature allows excitons to mediate an attractive interaction between charge carriers of only one spin species.
View Article and Find Full Text PDFNano Lett
June 2024
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
The study of exciton polarons has offered profound insights into the many-body interactions between bosonic excitations and their immersed Fermi sea within layered heterostructures. However, little is known about the properties of exciton polarons with interlayer interactions. Here, through magneto-optical reflectance contrast measurements, we experimentally investigate interlayer Fermi polarons for 2s excitons in WSe/graphene heterostructures, where the excited exciton states (2s) in the WSe layer are dressed by free charge carriers of the adjacent graphene layer in the Landau quantization regime.
View Article and Find Full Text PDFNat Commun
March 2024
Joint Quantum Institute (JQI), University of Maryland, College Park, MD, USA.
Understanding the Hubbard model is crucial for investigating various quantum many-body states and its fermionic and bosonic versions have been largely realized separately. Recently, transition metal dichalcogenides heterobilayers have emerged as a promising platform for simulating the rich physics of the Hubbard model. In this work, we explore the interplay between fermionic and bosonic populations, using a WS/WSe heterobilayer device that hosts this hybrid particle density.
View Article and Find Full Text PDFPhys Rev Lett
January 2024
Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
Motivated by recent surprising experimental findings, we develop a strong-coupling theory for Bose-Fermi mixtures capable of treating resonant interspecies interactions while satisfying the compressibility sum rule. We show that the mixture can be stable at large interaction strengths close to resonance, in agreement with the experiment, but at odds with the widely used perturbation theory. We also calculate the sound velocity of the Bose gas in the ^{133}Cs-^{6}Li mixture, again finding good agreement with the experimental observations both at weak and strong interactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!