Chlorophyll (Mg-Chl) and its derivatives, zinc chlorophyll (Zn-Chl), copper chlorophyll (Cu-Chl), pheophytin (Pheo), pheophorbide (Pheid), and zinc chlorophyllide (Zn-Chld), were studied as to their acid-base equilibrium properties, hydrophobicity, stability, binding, and relative localization in neutral surfactant micellar systems. The stability order of metalochlorophyll (pH(M)) in acidic medium was found to be Cu-Chl > Zn-Chld > Zn-Chl > Mg-Chl. The apparent pK(a) for protonation of porphyrin ring nitrogens was around 1.0 for all derivatives. The pK(a) for protonation of carboxylate phorbide was 5.9 for Pheid and 2.4 for Zn-Chld. This difference was attributed to complexation of carboxylate with zinc. The hydrophobicity of chlorophyll in relation to the ability of partitioning the cell membrane lipid layer was estimated in the octanol/water biphasic system. Pheo, a more hydrophobic molecule, presented the highest partition coefficient (K(P)) in the organic phase, followed by Cu-Chl, Mg-Chl, Zn-Chl, Pheid, and Zn-Chld. The hydrophobic character was the key to relative drug location in the micellar systems. All studied derivatives interacted strongly with Tween 80 micellar systems, and particularly with P-123. For both surfactants, the order followed by binding constant (K(b)) was Zn-Chld > Pheo > Cu-Chl > Mg-Chl > Zn-Chl > Pheid, while binding constants estimated for the Chl containing the phytyl group correlated with K(P). Fluorescence quenching studies have shown that phorbides are located in a less hydrophobic region than the phytyl chain-containing derivatives, which are located preferentially in a deeper micellar microenvironment. Thus, the association of the chlorophylls with specific binding sites of micellar systems is strongly modulated by the presence of phytyl chains and metal coordinated to the porphyrinic ring.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp201278bDOI Listing

Publication Analysis

Top Keywords

micellar systems
16
pka protonation
8
pheid zn-chld
8
cu-chl mg-chl
8
mg-chl zn-chl
8
zn-chl pheid
8
derivatives
5
systems
5
zn-chld
5
micellar
5

Similar Publications

Background: Capillary electrophoresis (CE) is a highly versatile separation technique widely used in analytical chemistry. Traditionally, CE can be categorized as either aqueous or non-aqueous systems based on the buffer solvents employed. For decades, non-aqueous CE has been predominantly associated with the use of organic solvents, a perception deeply ingrained in the scientific community.

View Article and Find Full Text PDF

Sigal peptides have garnered remarkable efficacy in rejuvenating photoaged skin and delaying senescence. Nevertheless, their low solubility and poor permeability bring about a formidable challenge in their transdermal delivery. To address this challenge, bioactive ionic liquids (ILs) synthesized from natural glycyrrhizic acid (GA) and oxymatrine (OMT) with eminent biocompatibility is first prepared.

View Article and Find Full Text PDF

A Comparative Digestion Study of Three Lipid Delivery Systems for Arachidonic and Docosahexaenoic Acids Intended to Be Used for Preterm Infants.

Molecules

December 2024

Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL, CSIC-UAM), C/Nicolas Cabrera 9, Cantoblanco Campus, Autonomous University of Madrid, 28049 Madrid, Spain.

It is well stablished that docosahexaenoic (DHA) and arachidonic (ARA) acids fulfill relevant biological activities, especially in newborns. However, oils containing these fatty acids are not always optimally digestible. To address this, various formulation strategies and lipid delivery systems have been developed.

View Article and Find Full Text PDF

The adsorption and aggregation of amphiphiles at different solvent interfaces are of great scientific and technological importance. In this study, interfacial tension measurements of surface-active compounds-ionic liquid 2-dodecyl-2,2dimethylethanolammonium bromide (12Cho.Br) and cationic surfactant cetyltrimethylammonium bromide (CTAB)-were conducted both in the absence and presence of ciprofloxacin (CIP).

View Article and Find Full Text PDF

A tumor-targeting porphyrin-micelle with enhanced STING agonist delivery and synergistic photo-/immuno- therapy for cancer treatment.

Acta Biomater

December 2024

Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China. Electronic address:

The activation of STING pathway has emerged as a promising strategy in cancer immunotherapy. However, challenges associated with unfavorable physicochemical properties and potential off-target toxicities have limited the application of STING agonists. Here, we develop an amphiphilic and cationic charged porphyrin-polymer to electrostatically load the STING agonist (MSA-2) within a micellar structure, thereby enhancing carrier compatibility and drug-loading content of MSA-2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!