A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Stromal cell-derived factor-1 and monocyte chemotactic protein-3 improve recruitment of osteogenic cells into sites of musculoskeletal repair. | LitMetric

Homing of osteogenic cells through the systemic circulation represents an alternative to traditional orthopedic tissue engineering approaches that focus on local cell populations. We hypothesize that expression of the chemokine, stromal cell-derived factor-1 (SDF-1) or monocyte chemotactic protein-3 (MCP-3) may enhance homing of osteogenic cells into sites of fracture repair, as both have demonstrated promise in recruitment of marrow stromal cells (MSCs). This hypothesis was tested by transplantation of culture expanded MSCs expressing these factors adjacent to a fracture site on a collagen scaffold. One green fluorescent protein positive (GFP+) and one wild-type mouse were surgically conjoined as parabiots at 7-8 weeks of age. Fibular osteotomy was performed 4 weeks after parabiosis on the hind limb of the wild-type mouse. Mice were randomly allocated to receive one of the following five treatments: control (no scaffold), empty scaffold (no cells), or scaffold containing MSCs, scaffold containing MSCs expressing SDF-1, or scaffold containing MSCs expressing MCP-3. Fracture callus was harvested 2 weeks after injury, and analyzed with confocal microscopy and cell-counting software. When compared to fracture callus treated with nontransfected MSCs, the fracture callus of mice treated with both SDF-1 and MCP-3 secreting MSCs demonstrated a significant increase in the number of both GFP+ cells (p = 0.0003, p = 0.02) and GFP+ /AP+ cells (p = 0.0005, p = 0.01). These data suggest that homing of osteogenic cells from systemic circulation participate in fracture repair and that homing pathways might be modulated to enhance the contribution of circulating progenitors at the site of skeletal injury.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jor.21374DOI Listing

Publication Analysis

Top Keywords

osteogenic cells
16
homing osteogenic
12
mscs expressing
12
scaffold mscs
12
fracture callus
12
stromal cell-derived
8
cell-derived factor-1
8
monocyte chemotactic
8
chemotactic protein-3
8
cells
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!