The interindividual variation in the rate of drug metabolism and disposition has been known for many years. Pharmacogenomics dealing with heredity and response to drugs is a part of science that attempts to explain variability of drug responses and to search for the genetic basis of such variations or differences. Genetic polymorphisms of drug metabolizing enzymes and drug transporters have been found to play a significant role in the patients' responses to medication. Accumulating evidence demonstrates that certain nonsynonymous polymorphisms have great impacts on the protein stability and degradation, as well as the function of drug metabolizing enzymes and transporters. The aim of this review article is to address a new aspect of protein quality control in the endoplasmic reticulum and to present examples regarding the impact of nonsynonymous single-nucleotide polymorphisms on the protein stability of thiopurine S-methyltransferase as well as ATP-binding cassette (ABC) transporters including ABCC4, cystic fibrosis transmembrane conductance regulator (CFTR, ABCC7), ABCC11, and ABCG2. Furthermore, we will discuss the molecular mechanisms underlying posttranslational modifications (intramolecular and intermolecular disulfide bond formation and N-linked glycosylation) and ubiquitin-mediated proteasomal degradation of ABCG2, one of the major drug transporter proteins in humans.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jps.22615DOI Listing

Publication Analysis

Top Keywords

ubiquitin-mediated proteasomal
8
proteasomal degradation
8
abc transporters
8
genetic polymorphisms
8
drug metabolizing
8
metabolizing enzymes
8
protein stability
8
drug
6
degradation abc
4
transporters
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!