Enzyme based micron sized sensing system with optical readout was fabricated by co-encapsulation of urease and dextran couple with pH sensitive dye SNARF-1 into polyelectrolyte multilayer capsules. Co-precipitation of calcium carbonate, urease and dextran followed up by multilayer film coating and Ca-extracting by EDTA resulted in the formation of 3.5-4 micron capsules, what enable the calibrated fluorescence response to urea in concentration range from 10(-6) to 10(-1) M. The presence of urea can be monitored on a single capsule level as illustrated by confocal fluorescent microscopy. Variations in urease:dye ratio in capsules, applicability and limits of use of that type multi-component microencapsulated sensors are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c1cp20354a | DOI Listing |
Anal Chem
January 2025
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Energy, Discipline of Intelligent Instrument and Equipment, Cancer Center and Department of Breast and Thyroid Surgery, Department of Ultrasound, Xiang'an Hospital of Xiamen University, School of Medicine, Laboratory Animal Center Xiamen University, Xiamen University, Xiamen 361005, China.
With the increasing incidence of thyroid cancer worldwide and the increasing demand for surgery, the risk of parathyroid injury is also increasing, which will lead to postoperative hypoparathyroidism (HP) and hypocalcemia. In order to improve the quality of life of patients after surgery, there is an urgent need to develop a novel platform that can identify the parathyroid gland immediately during surgery. The parathyroid gland promotes the increase of blood calcium concentration by secreting parathyroid hormone (PTH).
View Article and Find Full Text PDFAnal Chim Acta
March 2025
State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China. Electronic address:
Background: Based on the low volatility and refractory nature of Tetracycline (TC), excessive use leads to its continuous accumulation in water environments, posing serious risks to the ecological environment and human health. Although a very limited number of nanomaterials capable of simultaneously detecting and removing TC have been fabricated, they generally exist issues associated with a single detection signal ("on" or "off") or low adsorption rates with low adsorption capacities. As a result, it is crucial to develop a reliable technique to achieve ratiometric detection as well as rapid and efficient removal of TC.
View Article and Find Full Text PDFMol Biol Cell
January 2025
Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147 USA.
The endo-lysosomal system plays a crucial role in maintaining cellular homeostasis and promoting organism fitness. The pH of its acidic compartments is a crucial parameter for proper function, and it is dynamically influenced by both intracellular and environmental factors. Here, we present a method based on fluorescence lifetime imaging microscopy (FLIM) for quantitatively analyzing the pH profiles of acidic endolysosomal compartments in diverse types of primary mammalian cells and in live organism .
View Article and Find Full Text PDFMikrochim Acta
January 2025
School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China.
A ratiometric fluorescent nanoprobe (CDs-Rho), synthesized through the simple covalent amide linkage between carbon dots (CDs) and pH-sensitive rhodamine dye (Rho), was designed for the precise sensing and imaging of extremely alkaline environments. The sensing mechanism involves the opposite pH-dependent fluorescence changes in CDs and Rho, respectively, coupled with pH-regulated FRET efficiency from CDs to Rho. The nanoprobe features a wide pH response window from pH 7.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China.
In this study, the dispersion behavior of MoS₂ in ionic liquids (ILs) with varying alkyl chain lengths was the primary focus of investigation, followed by the design of a novel PAM/SMA/CMC/PDA@MoS hydrogel. By optimizing the concentrations of CMC and PDA@MoS, a bifunctional hydrogel with both sensing and catalytic functions was successfully developed. Mechanical tests revealed that the PAM/SMA/CMC/0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!