Elderly women regulate brain blood flow better than men do.

Stroke

Electrical & Electronic Engineering, School of Engineering & Informatics, NUI Galway, University Road, Galway, Ireland.

Published: July 2011

Background And Purpose: Orthostatic intolerance and falls differ between sexes and change with age. However, it remains unclear what role cerebral autoregulation may play in this response. This study was designed to determine whether cerebral autoregulation, assessed using transcranial Doppler ultrasound, is more effective in elderly females than in males.

Methods: We used transcranial Doppler ultrasound to evaluate cerebral autoregulation in 544 (236 male) subjects older than age 70 years recruited as part of the MOBILIZE Boston study. The MOBILIZE Boston study is a prospective cohort study of a unique set of risk factors for falls in seniors in the Boston area. We assessed CO2 reactivity and transfer function gain, phase, and coherence during 5 minutes of quiet sitting and autoregulatory index during sit-to-stand tests.

Results: Male subjects had significantly lower CO2 reactivity (males, 1.10 ± 0.03; females, 1.32 ± 0.43 (cm/s)/%CO2; P<0.001) and autoregulatory indices (males, 4.41 ± 2.44; female, 5.32 ± 2.47; P<0.001), higher transfer function gain (males, 1.34 ± 0.49; females, 1.19 ± 0.43; P=0.002), and lower phase (males, 42.7 ± 23.6; females, 49.4 ± 24.9; P=0.002) in the autoregulatory band, implying less effective cerebral autoregulation. However, reduced autoregulation in males was not below the normal range, indicating autoregulation was intact but less effective.

Conclusions: Female subjects were better able to maintain cerebral flow velocities during postural changes and demonstrated better cerebral autoregulation. The mechanisms of sex-based differences in autoregulation remain unclear but may partially explain the higher rates of orthostatic hypotension-related hospitalizations in elderly men.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7111558PMC
http://dx.doi.org/10.1161/STROKEAHA.110.605618DOI Listing

Publication Analysis

Top Keywords

cerebral autoregulation
12
transcranial doppler
8
doppler ultrasound
8
male subjects
8
mobilize boston
8
boston study
8
co2 reactivity
8
elderly women
4
women regulate
4
regulate brain
4

Similar Publications

Accurate interoceptive processing in decision-making is essential to maintain homeostasis and overall health. Disruptions in this process have been associated with various psychiatric conditions, including depression. Recent studies have focused on nutrient homeostatic dysregulation in depression for effective subtype classification and treatment.

View Article and Find Full Text PDF

Background: Entropy quantifies the level of disorder within a system. Low entropy reflects increased rigidity of homeostatic feedback systems possibly reflecting failure of protective physiological mechanisms like cerebral autoregulation. In traumatic brain injury (TBI), low entropy of heart rate and intracranial pressure (ICP) predict unfavorable outcome.

View Article and Find Full Text PDF

Molecular characterization, transcriptional profiling, and antioxidant activity assessment of nucleoredoxin (NXN) as a novel member of thioredoxin from red-lip mullet (Planiliza haematocheilus).

Fish Shellfish Immunol

December 2024

Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju 63333, Republic of Korea. Electronic address:

Nucleoredoxin (NXN) is a prominent oxidoreductase enzyme, classified under the thioredoxin family, and plays a pivotal role in regulating cellular redox homeostasis. Although the functional characterization of NXN has been extensively studied in mammals, its role in fish remains relatively unexplored. In this study, the NXN gene from Planiliza haematocheilus (PhNXN) was molecularly and functionally characterized using in silico tools, expression analyses, and in vitro assays.

View Article and Find Full Text PDF

Background: Maintaining autophagic homeostasis has been proved to play an important role in Alzheimer's disease.

Object: The aim of this study was to investigate the effect of Fuzhisan(FZS) on autophagic function in Alzheimer's disease and to elucidate its potential mechanism through the P62 regulatory pathways.

Methods: FZS was extracted by water extraction-rotary evaporation method.

View Article and Find Full Text PDF

HSP90 Family Members, Their Regulators and Ischemic Stroke Risk: A Comprehensive Molecular-Genetics and Bioinformatics Analysis.

Front Biosci (Schol Ed)

December 2024

Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia.

Background: Disruptions in proteostasis are recognized as key drivers in cerebro- and cardiovascular disease progression. Heat shock proteins (HSPs), essential for maintaining protein stability and cellular homeostasis, are pivotal in neuroperotection. Consequently, deepening the understanding the role of HSPs in ischemic stroke (IS) risk is crucial for identifying novel therapeutic targets and advancing neuroprotective strategies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!