Langerhans cells (LCs) are a distinct population of dendritic cells that form a contiguous network in the epidermis of the skin. Although LCs possess many of the properties of highly proficient dendritic cells, recent studies have indicated that they are not necessary to initiate cutaneous immunity. In this study, we used a tractable model of cutaneous GVHD, induced by topical application of a Toll-like receptor agonist, to explore the role of LCs in the development of tissue injury. By adapting this model to permit inducible and selective depletion of host LCs, we found that GVHD was significantly reduced when LCs were absent. However, LCs were not required either for CD8 T-cell activation within the draining lymph node or subsequent homing of effector cells to the epidermis. Instead, we found that LCs were necessary for inducing transcription of IFN-γ and other key effector molecules by donor CD8 cells in the epidermis, indicating that they license CD8 cells to induce epithelial injury. These data demonstrate a novel regulatory role for epidermal LCs during the effector phase of an inflammatory immune response in the skin.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3336775 | PMC |
http://dx.doi.org/10.1182/blood-2011-01-329185 | DOI Listing |
Cells
January 2025
Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada.
Bi-hormonal islet endocrine cells have been proposed to represent an intermediate state of cellular transdifferentiation, enabling an increase in beta-cell mass in response to severe metabolic stress. Beta-cell plasticity and regenerative capacity are thought to decrease with age. We investigated the ontogeny of bi-hormonal islet endocrine cell populations throughout the human lifespan.
View Article and Find Full Text PDFZhong Nan Da Xue Xue Bao Yi Xue Ban
August 2024
Department of Radiology, Third Xiangya Hospital, Central South University, Changsha 410013, China.
Objectives: Islet transplantation is one of the most promising curative methods for type 1 diabetes mellitus (T1DM), but early hypoxic death of the graft post-transplantation impedes successful treatment. To improve the efficacy of islet transplantation and enhance islet cell resistance to hypoxia, reducing hypoxic injury before revascularization is crucial. Mesenchymal stem cells (MSCs) are known to regulate immune responses and protect against hypoxic damage through paracrine mechanisms.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria.
Targeted delivery has emerged as a critical strategy in the development of novel therapeutics. The advancement of nanomedicine hinges on the safe and precise cell-specific delivery of protein-based therapeutics to the immune system. However, major challenges remain, such as developing an efficient delivery system, ensuring specificity, minimizing off-target effects, and attaining effective intracellular localization.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Institute of Physiology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01037 Dresden, Germany.
Endothelial dysfunction is a strong prognostic factor in predicting the development of cardiovascular diseases. Dysfunctional endothelium loses its homeostatic ability to regulate vascular tone and prevent overactivation of inflammation, leading to vascular dysfunction. These functions are critical for vascular homeostasis and arterial pressure control, the disruption of which may lead to hypertension.
View Article and Find Full Text PDFImmune cells determine the role of the tumor microenvironment during tumor progression, either suppressing tumor formation or promoting tumorigenesis. We analyzed the profile of immune cells in the tumor microenvironment of control mouse skins and skin tumors at the single-cell level. We identified 15 CD45 immune cell clusters, which broadly represent the most functionally characterized immune cell types including macrophages, Langerhans cells (LC), conventional type 1 dendritic cells (cDC1), conventional type 2 dendritic cells (cDC2), migratory/mature dendritic cells (mDC), dendritic epidermal T cells (DETC), dermal γδ T cells (γδT), T cells, regulatory T cells (Tregs), natural killer cells (NK), type 2 innate lymphoid cells (ILC2), neutrophils (Neu), mast cells (Mast), and two proliferating populations (Prolif.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!