IGF1-R signals through the RON receptor to mediate pancreatic cancer cell migration.

Carcinogenesis

Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California, 3855 Health Sciences Drive, San Diego, CA 92093-0987, USA.

Published: August 2011

The RON receptor tyrosine kinase (RTK) is overexpressed in the majority of pancreatic cancers, yet its role in pancreatic cancer cell biology remains to be clarified. Recent work in childhood sarcoma identified RON as a mediator of resistance to insulin-like growth factor receptor (IGF1-R)-directed therapy. To better understand RON function in pancreatic cancer cells, we sought to identify novel RON interactants. Using multidimensional protein identification analysis, IGF-1R was identified and confirmed to interact with RON in pancreatic cancer cell lines. IGF-1 induces rapid phosphorylation of RON, but RON signaling did not activate IGF-1R indicating unidirectional signaling between these RTKs. We next demonstrate that IGF-1 induces pancreatic cancer cell migration that is RON dependent, as inhibition of RON signaling by either shRNA-mediated RON knockdown or by a RON kinase inhibitor abrogated IGF-1 induced wound closure in a scratch assay. In pancreatic cancer cells, unlike childhood sarcoma, STAT-3, rather than RPS6, is activated in response to IGF-1, in a RON-dependent manner. The current study defines a novel interaction between RON and IGF-1R and taken together, these two studies demonstrate that RON is an important mediator of IGF1-R signaling and that this finding is consistent in both human epithelial and mesenchymal cancers. These findings demand additional investigation to determine if IGF-1R independent RON activation is associated with resistance to IGF-1R-directed therapies in vivo and to identify suitable biomarkers of activated RON signaling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3149203PMC
http://dx.doi.org/10.1093/carcin/bgr086DOI Listing

Publication Analysis

Top Keywords

pancreatic cancer
24
ron
16
cancer cell
16
ron signaling
12
ron receptor
8
cell migration
8
migration ron
8
childhood sarcoma
8
ron mediator
8
cancer cells
8

Similar Publications

Background: Major mutations (e.g., KRAS, GNAS, TP53, SMAD4) in pancreatic cyst fluid (PCF) are useful for classifying and risk stratifying certain cyst types, particularly in cases with nondiagnostic cytology.

View Article and Find Full Text PDF

The rising incidence of pancreatic diseases, including acute and chronic pancreatitis and various pancreatic neoplasms, poses a significant global health challenge. Pancreatic ductal adenocarcinoma (PDAC) for example, has a high mortality rate due to late-stage diagnosis and its inaccessible location. Advances in imaging technologies, though improving diagnostic capabilities, still necessitate biopsy confirmation.

View Article and Find Full Text PDF

CASC8 activates the pentose phosphate pathway to inhibit disulfidptosis in pancreatic ductal adenocarcinoma though the c-Myc-GLUT1 axis.

J Exp Clin Cancer Res

January 2025

Department of Hepato-Biliary-Pancreatic Surgery, General Surgery, Huadong Hospital, Fudan University, Shanghai, 200040, PR China.

Purpose: Glucose starvation induces the accumulation of disulfides and F-actin collapse in cells with high expression of SLC7A11, a phenomenon termed disulfidptosis. This study aimed to confirm the existence of disulfidptosis in pancreatic ductal adenocarcinoma (PDAC) and elucidate the role of Cancer Susceptibility 8 (CASC8) in this process.

Methods: The existence of disulfidptosis in PDAC was assessed using flow cytometry and F-actin staining.

View Article and Find Full Text PDF

Exploring the expression of DLL3 in gastroenteropancreatic neuroendocrine neoplasms and its potential diagnostic value.

Sci Rep

January 2025

State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Pathology, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, China.

Delta-like protein (DLL3) is a novel therapeutic target. DLL3 expression in gastroenteropancreatic neuroendocrine tumors (GEP-NECs) is poorly understood, complicating the distinction between well-differentiated neuroendocrine tumors G3 (NET G3) and poorly differentiated NEC. DLL3 immunohistochemistry (IHC) was performed on 248 primary GEP-NECs, correlating with clinicopathological parameters, NE markers, PD-L1, Ki67 index, and prognosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!