Armadillo armor: mechanical testing and micro-structural evaluation.

J Mech Behav Biomed Mater

Materials Science and Engineering Program, Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093, USA.

Published: July 2011

The armadillo has a unique protective bony armor, called the osteoderm, which confers to its shell-like skin distinctive mechanical properties. The top layer of the shell is made out of a dark-brown keratin layer with bimodal size scales. Beneath the keratin layer, the osteoderm consists of hexagonal or triangular tiles having a composition that is the same as bone. The tiles are connected by non-mineralized collagen fibers, called Sharpey's fibers. The tough and highly mineralized tiles have a tensile strength of approximately 20 MPa and toughness of around 1.1 MJ/m3. In comparison, the hydrated osteoderm has a lower tensile strength of ∼16 MPa and a toughness of 0.5 MJ/m3. The tensile failure occurs by the stretching and rupture of the Sharpey's fibers. In a specially designed punch test in which an individual tile is pushed out, the shear strength is ∼18 MPa, close to the tensile strength of the osteoderm. This surprising result is interpreted in terms of deformation in the Sharpey's fibers in the hydrated condition. The armadillo shell and a turtle shell are compared, with their corresponding similarities and differences.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmbbm.2010.12.013DOI Listing

Publication Analysis

Top Keywords

sharpey's fibers
12
tensile strength
12
keratin layer
8
mpa toughness
8
toughness mj/m3
8
armadillo armor
4
armor mechanical
4
mechanical testing
4
testing micro-structural
4
micro-structural evaluation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!