Chloroplast signals regulate hundreds of nuclear genes during development and in response to stress, but little is known of the signals or signal transduction mechanisms of plastid-to-nucleus (retrograde) signaling. In Arabidopsis thaliana, genetic studies using norflurazon (NF), an inhibitor of carotenoid biosynthesis, have identified five GUN (genomes uncoupled) genes, implicating the tetrapyrrole pathway as a source of a retrograde signal. Loss of function of any of these GUN genes leads to increased expression of photosynthesis-associated nuclear genes (PhANGs) when chloroplast development has been blocked by NF. Here we present a new Arabidopsis gain-of-function mutant, gun6-1D, with a similar phenotype. The gun6-1D mutant overexpresses the conserved plastid ferrochelatase 1 (FC1, heme synthase). Genetic and biochemical experiments demonstrate that increased flux through the heme branch of the plastid tetrapyrrole biosynthetic pathway increases PhANG expression. The second conserved plant ferrochelatase, FC2, colocalizes with FC1, but FC2 activity is unable to increase PhANG expression in undeveloped plastids. These data suggest a model in which heme, specifically produced by FC1, may be used as a retrograde signal to coordinate PhANG expression with chloroplast development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4886857 | PMC |
http://dx.doi.org/10.1016/j.cub.2011.04.004 | DOI Listing |
Biochem Biophys Rep
December 2024
O'Brien Institute Department, St Vincent's Institute of Medical Research, VIC, Australia.
Sci Rep
November 2024
Mid-infrared Photonics Group: George Green Institute for Electromagnetics Research Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, UK.
A chemical discrimination system based on photonic reservoir computing is demonstrated experimentally for the first time. The system is inspired by the way humans perceive and process visual sensory information. The electro-optical reservoir computing system is a photonic analogue of the human nervous system with the read-out layer acting as the 'brain', and the sensor that of the human eye.
View Article and Find Full Text PDFNat Commun
August 2024
State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China.
Chloroplasts are key players in photosynthesis and immunity against microbial pathogens. However, the precise and timely regulatory mechanisms governing the control of photosynthesis-associated nuclear genes (PhANGs) expression in plant immunity remain largely unknown. Here we report that TaPIR1, a Pst-induced RING-finger E3 ubiquitin ligase, negatively regulates Pst resistance by specifically interacting with TaHRP1, an atypical transcription factor histidine-rich protein.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Biol Lipids
October 2024
Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA; Department of Nutritional Sciences, University of Wisconsin-Madison, 1415 Linden Drive, Madison, WI 53706, USA. Electronic address:
Stearoyl-CoA desaturase-1 (SCD1) is a pivotal enzyme in lipogenesis, which catalyzes the synthesis of monounsaturated fatty acids (MUFA) from saturated fatty acids, whose ablation downregulates lipid synthesis, preventing steatosis and obesity. Yet deletion of SCD1 promotes hepatic inflammation and endoplasmic reticulum stress, raising the question of whether hepatic SCD1 deficiency promotes further liver damage, including fibrosis. To delineate whether SCD1 deficiency predisposes the liver to fibrosis, cirrhosis, and hepatocellular carcinoma (HCC), we employed in vivo SCD1 deficient global and liver-specific mouse models fed a high carbohydrate low-fat diet and in vitro established AML12 mouse cells.
View Article and Find Full Text PDFInt J Mol Sci
July 2024
State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China.
Plastid retrograde signaling plays a key role in coordinating the expression of plastid genes and photosynthesis-associated nuclear genes (PhANGs). Although plastid retrograde signaling can be substantially compromised by mitochondrial dysfunction, it is not yet clear whether specific mitochondrial factors are required to regulate plastid retrograde signaling. Here, we show that mitochondrial ATP synthase -subunit mutants with decreased ATP synthase activity are impaired in plastid retrograde signaling in .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!