Several recent studies showed that nitrite dosage to wastewater results in long-lasting reduction of the sulfate-reducing and methanogenic activities of anaerobic sewer biofilms. In this study, we revealed that the quick reduction in these activities is due to the biocidal effect of free nitrous acid (FNA), the protonated form of nitrite, on biofilm microorganisms. The microbial viability was assessed after sewer biofilms being exposed to wastewater containing nitrite at concentrations of 0-120 mg-N/L under pH levels of 5-7 for 6-24 h. The viable fraction of microorganisms was found to decrease substantially from approximately 80% prior to the treatment to 5-15% after 6-24 h treatment at FNA levels above 0.2 mg-N/L. The level of the biocidal effect has a much stronger correlation with the FNA concentration, which is well described by an exponential function, than with the nitrite concentration or with the pH level, suggesting that FNA is the actual biocidal agent. An increase of the treatment from 6 to 12 and 24 h resulted in only slight decreases in microbial viability. Physical disrupted biofilm was more susceptible to FNA in comparison with intact biofilms, indicating that the biocidal effect of FNA on biofilms was somewhat reduced by mass transfer limitations. The inability to achieve 2-log killing even in the case of disrupted biofilms suggests that some microorganisms may be more resistant to FNA than others. The recovery of biofilm activities in anaerobic reactors after being exposed to FNA at 0.18 and 0.36 mg-N/L, respectively, resembled the regrowth of residual sulfate-reducing bacteria and methanogens, further confirming the biocidal effects of FNA on microorganisms in biofilms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2011.04.026 | DOI Listing |
J Hazard Mater
January 2025
School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resources, Environment, and Ecology, Ministry of Education, Xi'an 710055, China. Electronic address:
Chemical dosing constitutes an effective strategy for sulfide control in sewers; however, its efficacy requires further optimization and enhancement. In this study, a novel dosing strategy using the synergistic dosing of calcium peroxide (CaO) and ferrous ions (Fe) for sulfide control was proposed, and its efficacy in controlling sulfides was evaluated using a long-term laboratory-scale reactor. The results showed that adding CaO-Fe improves the effect of sulfide control.
View Article and Find Full Text PDFWater Res
March 2025
Faculty of Engineering, Institute of Environmental and Process Engineering, RheinMain University of Applied Sciences, Wiesbaden, Germany.
Although the paper industry processes polymeric materials and discharges large amounts of wastewater, no research on microplastics in the wastewater from paper mills has been published to date. This study is the first to investigate this issue. The wastewater treatment plants of twelve representatively selected German paper mills were investigated using an analysis protocol based on µ-Raman spectroscopy.
View Article and Find Full Text PDFWater Res X
May 2024
School of Environmental Science & Engineering, Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China.
The frequent occurrence of safety incidents in sewer systems due to the emergency toxicity of hydrogen sulfide (HS) necessitate timely and efficient prediction, early warning and real-time control. However, various factors influencing HS generation and emission leads to a substantial computational burden for the existing dynamic sewer process models and fails to timely control the HS exposure risk. The present study proposed a swift prediction model (SPM) that combined the validated dynamic sewer process model (the biofilm-initiated sewer process model, BISM) with a high-speed machine learning algorithm (MLA), achieving accurately and swiftly predict the dissolved sulfide (DS) concentration and HS concentration in a specific sewer network.
View Article and Find Full Text PDFWater Res X
December 2024
School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China.
Chemosphere
November 2024
College of Environmental Science and Engineering, Tongji University, 200092 Shanghai, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, 200092 Shanghai, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China. Electronic address:
Nitrogen biotransformation plays a vital role in the metabolism of microbial communities in sewers. Extracellular polymeric substances (EPS) secreted by microbial communities can form gel-like sewer sediments, causing clogging of the sewer. However, knowledge on the effects of varying nitrogen conditions on the erosion resistance of sewer sediments and EPS produced by sewer microorganisms is limited.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!