We developed a spatially explicit model of a bioinvasion and used an approximate Bayesian computation (ABC) framework to make various inferences from a combination of genetic (microsatellite genotypes), historical (first observation dates) and geographical (spatial coordinates of introduction and sampled sites) information. Our method aims to discriminate between alternative introduction scenarios and to estimate posterior densities of demographically relevant parameters of the invasive process. The performance of our landscape-ABC method is assessed using simulated data sets differing in their information content (genetic and/or historical data). We apply our methodology to the recent introduction and spatial expansion of the cane toad, Bufo marinus, in northern Australia. We find that, at least in the context of cane toad invasion, historical data are more informative than genetic data for discriminating between introduction scenarios. However, the combination of historical and genetic data provides the most accurate estimates of demographic parameters. For the cane toad, we find some evidence for a strong bottleneck prior to introduction, a small initial number of founder individuals (about 15), a large population growth rate (about 400% per generation), a standard deviation of dispersal distance of 19 km per generation and a high invasion speed at equilibrium (50 km per year). Our approach strengthens the application of the ABC method to the field of bioinvasion by allowing statistical inferences to be made on the introduction and the spatial expansion dynamics of invasive species using a combination of various relevant sources of information.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1755-0998.2010.02882.x | DOI Listing |
R Soc Open Sci
January 2025
Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
Biological invasions can disrupt the close and longstanding coevolved relationships between host and parasites. At the same time, the shifting selective forces acting on demography during invasion can result in rapid evolution of traits in both host and parasite. Hosts at the invasion front may reduce investment into costly immune defences and redistribute those resources to other fitness-enhancing traits.
View Article and Find Full Text PDFIntegr Zool
January 2025
School of Natural Sciences, Macquarie University, Sydney, Australia.
The invasion of cane toads (Rhinella marina) across tropical Australia has resulted in the rapid evolution of traits that enable higher rates of dispersal, and that adapt toads to hot dry climates. In anurans, a larger heart facilitates both locomotor activity and desiccation tolerance. Heart size is also often affected, either directly or indirectly, by parasite infections.
View Article and Find Full Text PDFZootaxa
May 2024
Laboratório de Herpetologia e Comportamento Animal; Departamento de Ecologia; Instituto de Ciências Biológicas; Universidade Federal de Goiás; 74690-900 Goiânia; GO; Brazil.
Genome Biol Evol
November 2024
Evolution & Ecology Research Centre, School of Biotechnology & Biomolecular Sciences, University of New South Wales, Sydney, Australia.
Mitochondrial DNA (mtDNA) has been widely used in genetics research for decades. Contamination from nuclear DNA of mitochondrial origin (NUMTs) can confound studies of phylogenetic relationships and mtDNA heteroplasmy. Homology searches with mtDNA are widely used to detect NUMTs in the nuclear genome.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!