Tissue segregation of mitochondrial haplotypes in heteroplasmic Hawaiian bees: implications for DNA barcoding.

Mol Ecol Resour

Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland School of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK.

Published: January 2010

The issue of mitochondrial heteroplasmy has been cited as a theoretical problem for DNA barcoding but is only beginning to be examined in natural systems. We sequenced multiple DNA extractions from 20 individuals of four Hawaiian Hylaeus bee species known to be heteroplasmic. All species showed strong differences at polymorphic sites between abdominal and muscle tissue in most individuals, and only two individuals had no obvious segregation. Two specimens produced completely clean sequences from abdominal DNA. The fact that these differences are clearly visible by direct sequencing indicates that substantial intra-individual mtDNA diversity may be overlooked when DNA is taken from small tissue fragments. At the same time, differences in haplotype distribution among individuals may result in incorrect recognition of cryptic species. Because DNA barcoding studies typically use only a small fragment of an organism, they are particularly vulnerable to sequencing bias where heteroplasmy and haplotype segregation are present. It is important to anticipate this possibility prior to undertaking large-scale barcoding projects to reduce the likelihood of haplotype segregation confounding the results.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1755-0998.2009.02724.xDOI Listing

Publication Analysis

Top Keywords

dna barcoding
12
haplotype segregation
8
dna
6
tissue segregation
4
segregation mitochondrial
4
mitochondrial haplotypes
4
haplotypes heteroplasmic
4
heteroplasmic hawaiian
4
hawaiian bees
4
bees implications
4

Similar Publications

A genome-wide atlas of human cell morphology.

Nat Methods

January 2025

Broad Institute of MIT and Harvard, Cambridge, MA, USA.

A key challenge of the modern genomics era is developing empirical data-driven representations of gene function. Here we present the first unbiased morphology-based genome-wide perturbation atlas in human cells, containing three genome-wide genotype-phenotype maps comprising CRISPR-Cas9-based knockouts of >20,000 genes in >30 million cells. Our optical pooled cell profiling platform (PERISCOPE) combines a destainable high-dimensional phenotyping panel (based on Cell Painting) with optical sequencing of molecular barcodes and a scalable open-source analysis pipeline to facilitate massively parallel screening of pooled perturbation libraries.

View Article and Find Full Text PDF

Naturally occurring DNA inversion systems play an important role in the generation of genetic variation and adaptation in prokaryotes. Shufflon invertase (SI) from plasmid R64, recognizing asymmetric sites, has been adopted as a tool for synthetic biology. However, the availability of a single enzyme with moderate rates of recombination has hampered the more widespread use of SIs.

View Article and Find Full Text PDF

Background: Paeonia lactiflora Pall., a member of Paeoniaceae family, is a medicinal herb widely used in traditional Chinese medicine. Chloroplasts are multifunctional organelles containing distinct genetic material.

View Article and Find Full Text PDF

During macrofungal surveys in 2019-2024, several specimens belonging to the family Psathyrellaceae were collected from the bed of the Indus River, Punjab, Pakistan. Phylogenetic analyses, based on ITS, LSU, and tef-1α sequences and morpho-anatomical study, confirmed the novelty and placement of three taxa in the genus . They are described as , , and .

View Article and Find Full Text PDF

Metabarcoding for the Monitoring of the Microbiome and Parasitome of Medically Important Mosquito Species in Two Urban and Semi-urban Areas of South Korea.

Curr Microbiol

January 2025

Department of Tropical Medicine, Institute of Tropical Medicine, Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Yonsei-Ro 50-1, Seodaemun-Gu, Seoul, 03722, Republic of Korea.

Interactions between microbial communities and the host can modulate mosquito biology, including vector competence. Therefore, future vector biocontrol measures will utilize these interactions and require extensive monitoring of the mosquito microbiome. Metabarcoding strategies will be useful for conducting vector monitoring on a large scale.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!