The front-end logistics of DNA barcoding: challenges and prospects.

Mol Ecol Resour

Canadian Centre for DNA Barcoding, Biodiversity Institute of Ontario, University of Guelph, Guelph, Ontario, Canada N1G 2W1.

Published: May 2009

Building a global library of DNA barcodes will require efficient logistics of pre-laboratory specimen processing and seamless interfacing with molecular protocols. If not addressed properly, the task of aggregating specimens may become the biggest bottleneck in the analytical chain. Three years of experience in developing a collection management system to facilitate high-throughput DNA barcoding have allowed the Canadian Centre for DNA Barcoding to recognize and resolve the most common logistical obstacles. Dealing with these challenges on a larger scale will be an important step towards building a solid collection-based foundation for the international DNA barcoding effort.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1755-0998.2009.02629.xDOI Listing

Publication Analysis

Top Keywords

dna barcoding
16
dna
5
front-end logistics
4
logistics dna
4
barcoding
4
barcoding challenges
4
challenges prospects
4
prospects building
4
building global
4
global library
4

Similar Publications

Characterizing the feeding ecology of threatened species is essential to establish appropriate conservation strategies. We focused our study on the proboscis monkey (Nasalis larvatus), an endangered primate species which is endemic to the island of Borneo. Our survey was conducted in the Lower Kinabatangan Wildlife Sanctuary (LKWS), a riverine protected area that is surrounded by oil palm plantations.

View Article and Find Full Text PDF

Background: Single-cell technologies have revealed significant microglial cell heterogeneity across the human brain in both health and disease. However, the integration of high-plex protein and spatial information in single-cell approaches constitutes a challenge essential for advancing our cell biology comprehension in the neuroscience field.

Method: In the present study, we employed co-detection by indexing (CODEX), a protein multiplexed imaging technology, for the first time to unravel the association between different microglial populations and pathological features of Alzheimer's disease (AD) in the human brain.

View Article and Find Full Text PDF

Background: Synaptic degeneration is a primary neuropathological factor associated with cognitive decline in Alzheimer's disease (AD). In 2021, we generated a synaptic Polygenic Risk Score (PRS) that comprised only 8 variants within 6 synaptic genes (APOE, PICALM, BIN1, PTK2B, DLG2 and MINK1) that predicted AD with 72% accuracy in two neuropathological cohorts. This supports the hypothesis that genetic variants that regulate an individual's vulnerability to AD-related synapse degeneration could be used to identify individuals at-risk for AD prior to the appearance of clinical symptoms.

View Article and Find Full Text PDF

The CRISPR-activated repair lineage tracing (CARLIN) mouse line uses DNA barcoding to enable high-resolution tracing of cell lineages in vivo (Bowling et al, Cell 181, 1410-1422.e27, 2020). CARLIN mice contain expressed barcodes that allow simultaneous interrogation of lineage and gene expression information from single cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!