Chemogenetic analysis of human protein methyltransferases.

Chem Biol Drug Des

Epizyme, Inc., 840 Memorial Drive, Cambridge, MA 02139, USA Genstruct Inc., One Alewife Center, Cambridge, MA 02140, USA.

Published: August 2011

A survey of the human genome was performed to understand the constituency of protein methyltransferases (both protein arginine and lysine methyltransferases) and the relatedness of their catalytic domains. We identified 51 protein lysine methyltransferase proteins based on similarity to the canonical Drosophila Su(var)3-9, enhancer of zeste (E(z)), and trithorax (trx) domain. Disruptor of telomeric silencing-1-like, a known protein lysine methyltransferase, did not fit within the protein lysine methyltransferase family, but did group with the protein arginine methyltransferases, along with 44 other proteins, including the METTL and NOP2/Sun domain family proteins. We show that a representative METTL, METTL11A, demonstrates catalytic activity as a histone methyltransferase. We also solved the co-crystal structures of disruptor of telomeric silencing-1-like with S-adenosylmethionine and S-adenosylhomocysteine bound in its active site. The conformation of both ligands is virtually identical to that found in known protein arginine methyltransferases, METTL and NOP2/Sun domain family proteins and is distinct from that seen in the Drosophila Su(var)3-9, enhancer of zeste (E(z)), and trithorax (trx) domain protein lysine methyltransferases. We have developed biochemical assays for 11 members of the protein methyltransferase target class and have profiled the affinity of three ligands for these enzymes: the common methyl-donating substrate S-adenosylmethionine; the common reaction product S-adenosylhomocysteine; and the natural product sinefungin. The affinity of each of these ligands is mapped onto the family trees of the protein lysine methyltransferases and protein arginine methyltransferases to reveal patterns of ligand recognition by these enzymes.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1747-0285.2011.01135.xDOI Listing

Publication Analysis

Top Keywords

protein lysine
20
protein arginine
16
protein
12
lysine methyltransferases
12
lysine methyltransferase
12
arginine methyltransferases
12
methyltransferases
8
protein methyltransferases
8
methyltransferases protein
8
drosophila suvar3-9
8

Similar Publications

Background: Autism spectrum disorder (ASD) has been reported to confer an increased risk of natural premature death. Telomere erosion caused by oxidative stress is a common consequence in age-related diseases. However, whether telomere length (TL) and oxidative indicators are significantly changed in ASD patients compared with controls remains controversial.

View Article and Find Full Text PDF

The papillomavirus E2 protein regulates the transcription, replication, and segregation of viral episomes within the host cell. A multitude of post-translational modifications have been identified which control E2 functions. A highly conserved di-lysine motif within the transactivation domain (TAD) has been shown to regulate the normal functions of the E2 proteins of BPV-1, SfPV1, HPV-16, and HPV-31.

View Article and Find Full Text PDF

A human epidermal growth factor receptor 2 (HER2)-specific nanobody called 2Rs15d, containing a His3LysHis6 segment at the C-terminus, was recombinantly produced. Subsequent site-selective acylation on the C-terminally activated lysine residue allowed installation of the cytotoxin monomethyl auristatin E-functionalized cathepsin B-sensitive payload to provide a highly homogenous nanobody-drug conjugate (NBC), which demonstrated high potency and selectivity for HER2-positive breast cancer models.

View Article and Find Full Text PDF

Epigenetic abnormalities play a critical role in colon carcinogenesis, making them a promising target for therapeutic interventions. In this study, we demonstrated that curcumin reduces colon cancer cell survival and that a decrease in lysine methylation was involved in such an effect. This correlated with the downregulation of methyltransferases EZH2, MLL1, and G9a, in both wild-type p53 (wtp53) HCT116 cells and mutant p53 (mutp53) SW480 cells, as well as SET7/9 specifically in wtp53 HCT116 cells.

View Article and Find Full Text PDF

Collagen I is the most abundant type of intramuscular collagen. Lysyl oxidase promotes collagen cross-link formation, which helps stabilize the extracellular matrix. Furthermore, matrix metalloproteinases, responsible for collagen degradation, maintain typical muscle structure and function through remodeling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!