The antibiotics pyoluteorin and 2,4-diacetylphloroglucinol (DAPG) contribute to the biological control of soilborne plant diseases by some strains of Pseudomonas fluorescens, including Pf-5. These secondary metabolites also have signalling functions with each compound reported to induce its own production and repress the other's production. The first step in DAPG biosynthesis is production of phloroglucinol (PG) by PhlD. In this study, we show that PG is required at nanomolar concentrations for pyoluteorin production in Pf-5. At higher concentrations, PG is responsible for the inhibition of pyoluteorin production previously attributed to DAPG. DAPG had no effect on pyoluteorin production, and monoacetylphloroglucinol showed both stimulatory and inhibitory activities but at concentrations 100-fold greater than the levels of PG required for similar effects. We also demonstrate that PG regulates pyoluteorin production in P. aeruginosa and that a phlD gene adjacent to the pyoluteorin biosynthetic gene cluster in P. aeruginosa strain LESB58 can restore pyoluteorin biosynthesis to a ΔphlD mutant of Pf-5. Bioinformatic analyses show that the dual role of PhlD in the biosynthesis of DAPG and the regulation of pyoluteorin production could have arisen within the pseudomonads during the assembly of these biosynthetic gene clusters from genes and gene subclusters of diverse origins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-2958.2011.07697.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!